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ABSTRACT  Targeted recombination is the ability to induce 
or select for specific recombination points on chromosomes. 
A first study with the intermated B73 ´ Mo17 maize (Zea 
mays L.) population showed that targeted recombination 
doubles the predicted gains for yield and other agronomic 
traits. Our objective was to assess the predicted gains from 
targeted recombination for quantitative traits in multiple, 
elite maize populations. A total of 969 biparental maize 
populations were phenotyped at four to 12 environments in the 
United States from 2000 to 2008. Positions of one and two 
targeted recombinations per chromosome were determined 
from genomewide marker effects for 2911 single nucleotide 
polymorphism (SNP) loci. Relative efficiency (RETargeted) was 
calculated as the predicted response to targeted recombination 
divided by the predicted response to nontargeted recombination. 
On average, targeted recombination doubled the predicted 
genetic gains for yield, moisture, and test weight. For each 
trait, RETargeted ranged from around 60 to 400% among the 
populations, and targeted recombination did not increase 
gains in around 4% of the populations. The RETargeted tended to 
decrease as the similarity between the parents increased. Having 
targeted recombination on three chromosomes (for yield and test 
weight) to seven chromosomes (for moisture) led to the same or 
greater predicted gain than nontargeted recombination. Marker 
intervals for targeted recombination varied across populations 
and traits. Overall, our results for multiple, elite maize populations 
indicated that targeted recombination is a most promising 
breeding approach.

Maize breeding usually involves crossing two 
inbreds (A and B) to form a breeding population, 

developing selfed lines or doubled haploids from the 
A/B population, and evaluating the lines for their test-
cross performance (Hallauer, 1990). Breeders therefore 
choose which crosses to make and which progeny to 
select. However, breeders have not attempted to control 
recombination among loci for quantitative traits and 
have simply relied on the results of random meiosis and 
fertilization during the development of breeding lines 
(Bernardo, 2017).

Targeted recombination is the ability to induce or 
select for specific recombination points so that genetic 
gains can be maximized. The marker intervals where 
targeted recombination should occur can be determined 
from genomewide marker effects (Bernardo, 2017; Ru 
and Bernardo, 2018). The procedure assumes that for a 
given trait, at least two quantitative trait loci (between 
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which targeted recombination is to occur) are on a given 
chromosome, and this assumption is likely met for a 
complex trait such as grain yield. Suppose a chromo-
some has three SNP markers and the effects of marker 
alleles (in order on the chromosome) carried by two 
parental inbreds are as follows: [0.2, 0.4, −0.5] in parent 
A, and [−0.2, −0.4, 0.5] in parent B. If recombination 
occurs between the second and third markers, a [0.2, 
0.4, 0.5] homologue that maximizes the genetic gain can 
be recovered and converted into a doubled haploid. The 
same process can be done with many SNP loci on a chro-
mosome and across multiple chromosomes.

An initial study with the intermated B73 ´ Mo17 
maize population showed that in this classic maize popu-
lation, predicted gains with one targeted recombination 
per chromosome (x = 1) were twice the predicted gains 
with nontargeted recombination for yield and other agro-
nomic traits (Bernardo, 2017). Predicted gains were higher 
with two targeted recombinations per chromosome (x = 
2). While this initial Bernardo (2017) study indicated that 
targeted recombination is a promising breeding approach, 
we do not know if the predicted gains will also be doubled 
in newer, elite maize germplasm. We also do not know the 
extent of variation in the usefulness of targeted recombi-
nation among multiple breeding populations. Lastly, infor-
mation is lacking on factors that influence the usefulness 
of targeted recombination for quantitative traits.

Our main objective of this study was to assess the pre-
dicted gains from targeted recombination for yield, mois-
ture, and test weight in multiple maize populations. Our 
specific goals were to (i) determine the extent of variation 
in predicted gains from targeted recombination across 
elite maize populations, (ii) identify factors that cause tar-
geted recombination to be ineffective, and (iii) determine 
the number of chromosomes on which targeted recombi-
nation needs to be performed to achieve equal or greater 
predicted gains as nontargeted recombination.

MATERIALS AND METHODS
Phenotypic and Marker Data
The data have been previously described (Jacobson et al., 
2014, 2015a,b; Lian et al., 2014; Brandariz and Bernardo, 
2018) but are also briefly described here for the readers’ 
convenience. Monsanto provided us with testcross phe-
notypic and SNP marker data for 969 biparental maize 
populations. The populations were evaluated for yield 
(Mg ha−1 at 155 g H2O kg−1), moisture (g H2O kg−1), and 
test weight (kg hL−1) at four to 12 environments in the 
United States from 2000 to 2008 (Jacobson et al., 2014). 
Only the F2 populations with heritability (h2) signifi-
cantly different from zero (P = 0.05) were used in this 
study. The h2 had a mean and range (in parentheses) of 
0.46 (0.18, 0.92) for yield, 0.67 (0.25, 0.91) for moisture, 
and 0.60 (0.20, 0.92) for test weight.

The parents of the populations were genotyped with 
2911 SNP markers, whereas the progeny were genotyped 
with 25 to 123 markers. The genotypes at each locus were 

coded as 1 if the line was homozygous for the SNP allele 
from parent A, −1 if the line was homozygous for the 
SNP allele from parent B, and 0 if the line was heterozy-
gous. Marker loci that were monomorphic between the 
two parental inbreds or that had a minor allele frequency 
<0.10 were excluded within each population (Lian et 
al., 2014; Jacobson et al., 2015a). The SNP data for the 
progeny were then imputed from the parental SNP data, 
based on the conditional probability of a nonobserved 
marker genotype given the two flanking-marker geno-
types (Jacobson et al., 2015a). Monsanto provided us 
with a consensus map for all populations. The linkage 
map comprised 1668 cM, and the chromosome sizes 
ranged from 103 cM for chromosome 6 to 245 cM for 
chromosome 1.

Genomewide Marker Effects
Marker effects were obtained by ridge regression–best 
linear unbiased prediction (RR-BLUP) as implemented 
in the rrBLUP package (Endelman, 2011) in R (R Devel-
opment Core Team, 2018). Two training population mod-
els were used for estimating the marker effects: the A/B 
model, and the general combining ability (GCA) model. 
In the A/B model, marker effects were estimated from 
the A/B population itself. For each trait, the performance 
of an individual was predicted from information on the 
remaining N – 1 individuals as yp = m + Xm, where yp 
was the predicted performance of the individual; m was 
the estimated overall mean from RR-BLUP analysis of 
the N – 1 individuals used in the training population; X 
was an 1 ´ NM incidence matrix with elements of 1, −1, 
and 0; and m was an NM ´ 1 vector of marker effects esti-
mated from the remaining N – 1 individuals (Jacobson 
et al., 2014). The shrinkage factor for marker effects was 
a function of restricted maximum likelihood estimates, 
obtained in the rrBLUP package, of the residual vari-
ance and a common (across SNP loci) marker variance. 
The marker effects and predictive ability (rMP), the lat-
ter defined as the correlation between marker-predicted 
values and phenotypic values, were estimated by delet-
ing one individual at a time as described above and with 
cross-validation across environments. Cross-validation 
across environments was conducted by iterating through 
all possible partitions of the environments into a training 
set and validation set (Jacobson et al., 2014).

In the GCA model, the training population was 
obtained by pooling all prior A/* populations (* being a 
parent from the same heterotic group as A and B) and all 
prior */B populations to predict the performance of prog-
eny in the A/B cross. For each trait, marker effects were 
estimated separately within each A/* and */B population 
(Jacobson et al., 2014). Such within-population analysis 
accounted for differences in m among populations, which 
in turn were due to population structure as well as differ-
ences in the sets of environments used to evaluate each 
A/* and */B population. Marker effects were averaged 
across the A/* and */B populations (Jacobson et al., 2014; 
2015a). The performance of all N individuals in the A/B 
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population was then predicted as y =  m1 + Xm, where y 
was an N ´ 1 vector of predicted performance; 1 was an 
N ´ 1 vector with elements equal to 1; X was an N ´ NM 
incidence matrix with elements of 1, −1, and 0; and m 
was an NM ´ 1 vector of marker effects averaged across 
the A/* and */B populations (Jacobson et al., 2014).

For the GCA model, 27 F2 populations were selected 
as the A/B populations on the basis of having at least 
four A/* and */B crosses, a minimum population size of 
50 lines, and an entry-mean heritability (h2) significantly 
greater than zero for each trait as described by Jacobson 
et al. (2014, 2015a). Both the A/B model and GCA model 
were used for these 27 A/B populations, and the model 
that led to the higher rMP was selected for each trait and 
A/B population. For the rest of the populations, only the 
A/B model was used. Once predictions were obtained, 
populations were filtered according to having (i) rMP > 
0.40 or (ii) a correlation between marker-predicted values 
and true genotypic values (rMG) > 0.65. The rMG values 
were estimated as rMP/h (Dekkers, 2007; Lee et al., 2008).

The number of F2 populations with h2 > 0 was 706 for 
yield, 707 for moisture, and 698 for test weight. The num-
ber of F2 populations with rMP > 0.40 was 30 for yield, 314 
for moisture, and 187 for test weight. The number of F2 
populations with rMG > 0.65 was six for yield, 51 for mois-
ture, and 17 for test weight.

Predicted Gains from Targeted Recombination
Marker effects, calculated with either the A/B model or 
GCA model as described above, were used to determine 
the marker intervals where one and two targeted recom-
binations should occur on each chromosome (Bernardo, 
2017). First, one targeted recombination was considered 
at each marker interval on each chromosome. The per-
formance of two doubled haploids, induced from each of 
the two resulting homologues, was calculated as the sum 
of the effects of the alleles carried by each homologue. 
The homologue with superior performance (higher yield 
and test weight and lower moisture) was identified. The 
procedure was repeated for all 10 chromosomes. The 
predicted performance of the doubled haploid resulting 
from targeted recombination was calculated as the sum 
of m from RR-BLUP analysis plus the sum of the gains 
from targeted recombination within each chromosome. 
Second, two targeted recombinations were considered 
between all pairs of marker intervals within each chro-
mosome assuming independent recombinations on each 
chromosome. Subsequent procedures were the same as 
those with one targeted recombination per chromosome.

For each F2 population, the response to selection 
with targeted recombination (RTargeted) was calculated as 
the predicted performance of the best doubled haploid 
from targeted recombination minus the estimate of m 
from the RR-BLUP analysis. The response with nontar-
geted recombination (RNontargeted) was estimated as the 
marker-predicted performance of the best observed line 
minus the estimate of m from RR-BLUP analysis. Because 

of the shrinkage of RR-BLUP marker effects toward the 
mean, marker-predicted values for each trait are closer to 
the mean in comparison with the corresponding pheno-
typic values. The use of marker-predicted values instead 
of phenotypic values to calculate RNontargeted therefore 
accounted for the difference in scale because of shrink-
age in RR-BLUP (Bernardo, 2017). The relative efficiency 
of selection with targeted recombination vs. nontargeted 
recombination was calculated for each population as 
RETargeted = (RTargeted/RNontargeted) ´ 100 (Bernardo, 2017). 
Confidence intervals (P = 0.05) for the difference in the 
genetic gain with targeted recombination vs. nontar-
geted recombination were conducted by obtaining the 
difference in the genetic gain for each chromosome and 
performing 1000 bootstrap samples within each chromo-
some (Ru and Bernardo, 2018; Bernardo, 2017).

Factors Associated with the Relative Efficiency 
of Targeted Recombination
The correlation was calculated between RETargeted and 
rMP, rMG, h2, and the marker similarity (SAB) between the 
parents of the biparental cross. The SAB between parents 
was estimated as the simple matching coefficient across 
the SNP loci (Sokal and Michener, 1958; Jacobson et al., 
2015b; Brandariz and Bernardo, 2018). First, we calcu-
lated the within-locus simple matching coefficients by 
considering the possible combinations of marker geno-
types (MM, Mm, and mm) between the parents. The 
simple matching coefficient was 1 between MM and MM 
or between mm and mm, 0 between MM and mm, and 
0.50 between Mm and any other genotype (MM, Mm, or 
mm). Second, we calculated the mean of the within-locus 
simple matching coefficients across the SNP loci.

RESULTS
Mean and Variability of the Relative Efficiency 
of Targeted versus Nontargeted Recombination
On average, having one (x = 1) or two (x = 2) targeted 
recombinations per chromosome doubled the predicted 
genetic gain for yield, moisture, and test weight. For 
yield, the mean RETargeted was 217% with x = 1 and 233% 
with x = 2 for populations with h2 > 0; 230% with x = 1 
and 258% with x = 2 for populations with rMP > 0.40; and 
243% with x = 1 and 292% with x = 2 for populations 
with rMG > 0.65 (Fig. 1). The mean RETargeted for moisture 
and test weight was also ?200% for all subsets of popula-
tions meeting the h2, rMP, and rMG criteria (Fig. 1).

While the mean RETargeted was around 200%, the 
individual RETargeted values differed among the popula-
tions. For the populations with h2 > 0, RETargeted for yield 
ranged from 60 to 454% with x = 1 and from 72 to 452% 
with x = 2. However, for populations with rMP > 0.40 or 
with rMG > 0.65, RETargeted for yield was always >100% 
(Fig. 1). For moisture, RETargeted ranged from 63 to 422% 
with x = 1, and from 80 to 449% with x = 2 for popula-
tions with h2 > 0. Similar variation in RETargeted was found 
among populations with rMP > 0.40 or with rMG > 0.65 
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(Fig. 1). The RETargeted for test weight ranged from 60 to 
415% with x = 1 and from 81 to 431% with x = 2 with h2 
> 0. Some populations with rMP > 0.40 had RETargeted < 
100%, but none of the populations with rMG > 0.65 had 
RETargeted < 100% (Fig. 1).

The variation in RETargeted (i.e., ratio between 
predicted gains) was accompanied by variation in 
the predicted gain itself (i.e., RTargeted), which was the 
numerator of RETargeted. For the populations with h2 > 0, 
RTargeted for yield ranged from <0.1 to 3.0 Mg ha−1 with 
x = 1 and from < 0.1 to 3.7 Mg ha−1 with x = 2. These 
RTargeted values resulted in predicted yields ranging from 
9 to 17 Mg ha−1 with x = 1 and x = 2 (Fig. 2). Approxi-
mately 97% of predicted yields were lower than 15.7 Mg 
ha−1 (250 bushels acre−1) with either x = 1 and x = 2 with 
h2 > 0 (Fig. 2).

The RTargeted for moisture ranged from less than 
−0.1 to −64 g kg−1 with x = 1 and from less than −0.1 to 
−69.3 g kg−1 with x = 2, resulting in predicted moisture 
values of 123 to 313 g kg−1 with x = 1 and x = 2 (Fig. 2). 
For test weight, the RTargeted ranged from < 0.1 to 5 kg hL−1 

with x = 1 and from <0.1 to 5.7 kg hL−1 with x = 2, result-
ing in predicted test weights of 68 to 82 kg hL−1 with x = 
1 and x = 2 (Fig. 2).

Frequency of Populations in which Targeted 
Recombination is Likely Ineffective
Targeted recombination was predicted to be ineffec-
tive when (i) RETargeted was <100% or (ii) RETargeted was 
numerically >100% but was not statistically different 
(P = 0.05) from 100%. The numbers of populations with 
RETargeted < 100% were as follows: 13 for yield (1.8%) 
with x = 1 and eight (1.1%) with x = 2 (five in common); 
six for moisture (0.9%) with x = 1 and eight (1.1%) with 
x = 2 (two in common); and 10 for test weight (1.4%) 
with x = 1 and seven (1.0%) with x = 2 (three in com-
mon). In these populations, the best line had more than 
two nontargeted recombinations on some chromosomes 
(results not shown). The numbers of populations with 
RETargeted exceeding 100%, but not significantly greater 
than 100%, were as follows: 20 for yield (2.8%) with x 
= 1 and 19 (2.7%) with x = 2 (14 in common); 15 for 

Fig. 1. Box-plot of relative efficiency (RETargeted, %) of selection with one (x = 1) and two (x = 2) targeted recombinations per chromosome vs. nontar-
geted recombination, for maize F2 populations with: heritability on an entry-mean basis (h2) > 0; correlation between marker-predicted values and 
phenotypic values (rMP) > 0.40; and correlation between marker-predicted values and true genotypic values (rMG) > 0.65.
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moisture (2.3%) with x = 1 and 21 (3.0%) with x = 2 (11 
in common); and 17 for test weight (2.4%) with x = 1 
and 19 (2.7%) with x = 2 (11 in common). Adding the 
frequencies of RETargeted <100% and RETargeted not signifi-
cantly greater than 100% led to an overall frequency of 
?4% of populations for which targeted recombination 
for a given trait was ineffective.

The correlations were low (−0.04 to 0.14) and 
mostly nonsignificant between RETargeted and values 
of h2, rMP, and rMG for all traits. However, the correla-
tion between RETargeted and the marker similarity (SAB) 
between the parents of each cross was significant for 
all traits. The correlations between RETargeted and SAB 
were as follows: −0.23 for yield with both x = 1 and x 
= 2; −0.25 for moisture with x = 1 and −0.27 with x = 
2; and −0.24 for test weight with x = 1 and −0.25 with 
x = 2.

Chromosome Contributions and Targeted-
Recombination Positions

In general, chromosomal contributions to the total pre-
dicted gain (averaged across populations with h2 > 0) 
were proportional to the sizes (in cM) of the chromo-
somes (Fig. 3). However, chromosomal contributions 
were slightly larger than expected for chromosomes 1, 5, 
and 2 and were slightly smaller than expected for chro-
mosomes 8 and 9. The mean and range (in parentheses) 
of the minimum number of chromosomes needed for 
targeted recombination to reach equal or greater pre-
dicted gains compared with nontargeted recombination 
was 3 (1, 8) with x = 1 and 3 (1, 9) with x = 2 for yield; 7 
(1, 9) with x = 1 and 7 (3, 9) with x = 2 for moisture; and 3 
(1, 9) with both x = 1 and x = 2 for test weight.

The most frequent positions where one and two 
targeted recombinations should occur varied across 

Fig. 2. Predicted performance with nontargeted recombination and one (x = 1) and two (x = 2) targeted recombinations per chromosome, for 
maize F2 populations with: heritability on an entry-mean basis (h2) > 0; correlation between marker-predicted values and phenotypic values 
(rMP) > 0.40; and correlation between marker-predicted values and true genotypic values (rMG) > 0.65.
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populations. For yield, the most frequent position with 
x = 1 on chromosome 1 had an incidence of 14.6% 
(Table 1). In other words, ?15% of the populations had 
the same targeted-recombination position for x = 1 on 
chromosome 1. Chromosomes 6 and 9 had the high-
est incidence of the most frequent positions for a given 
trait (Table 1). For these two chromosomes, ?40% of 
the populations had the same targeted-recombination 

position for x = 1 and ?30% of the populations shared a 
position for x = 2.

Targeted-recombination positions also varied across 
traits. For x = 1 on chromosome 1, only 3% of the popula-
tions shared the same targeted-recombination position for 
all three traits, 24% of the populations shared the same 
position for two traits, and 73% had unique positions for 
each trait (Table 2). More than 50% of the populations did 
not share targeted-recombination positions across traits 
except for chromosomes 6 and 9 with x = 1 (Table 2).

DISCUSSION
Targeted Recombination as a Promising 
Breeding Approach
Our results showed that targeted recombination is pre-
dicted to substantially improve genetic gains for yield, 
moisture, and test weight in elite maize breeding popula-
tions. On average, targeted recombination doubled the 
predicted gains for all traits. The RETargeted values in this 
study were similar to those found for yield in the B73 ´ 
Mo17 maize population (212% with x = 1 and 254% with 
x = 2; Bernardo, 2017). The results from this study with 
hundreds of elite maize populations therefore provided 

Fig. 3. Mean percentage (%) of (i) chromosome contribution relative to the total predicted gain with one (x = 1) and two (x = 2) targeted recom-
binations per chromosome and (ii) size of each chromosome relative to the total linkage map across maize populations with heritability on an 
entry-mean basis (h2) > 0.

Table 1. Incidence (%) of the most frequent positions for one (x = 1) 
and two (x = 2) targeted recombinations per chromosome across 
maize F2 populations with heritability on an entry-mean basis > 0.

Chromosomes
Yield Moisture Test weight

x = 1 x = 2 x = 1 x = 2 x = 1 x = 2
1 14.6 4.2, 2.8 15.4 3.5, 4.2 14.3 3.9, 3.6
2 24.6 10.6, 10.1 19.7 8.6, 9.1 24.5 10.2, 10.1
3 25.5 14.0, 13.8 29.4 12.3, 12.1 27.2 14.3, 14.3
4 21.6 7.5, 8.0 24.2 9.2, 9.1 20.2 6.4, 6.5
5 22.8 8.9, 9.1 22.3 9.2, 9.2 21.8 8.6, 8.8
6 44.8 34.6, 34.7 42.3 32.2, 32.3 39.4 31.2, 31.1
7 27.8 16.3, 16.3 26.6 14.3, 14.2 26.7 15.0, 15.1
8 29.2 16.4, 16.5 27.3 14.1, 14.1 25.8 13.3, 13.3
9 41.6 33.2, 33.1 43.7 33.6, 34.1 41.4 33.1, 33.1
10 30.2 15.3, 15.2 25.6 10.6, 10.8 27.4 13.9, 14.1
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strong evidence of the potential value of targeted recom-
bination. As discussed in the next section, this assumes 
that inducing artificial targeted recombination or pyra-
miding natural recombinations that already occur at the 
desired marker intervals becomes feasible.

While the predicted gains were doubled on aver-
age, the RETargeted for each trait ranged from around 60 
to 400% among the populations, showing that predicted 
gains from targeted recombination may be population 
dependent. More importantly, targeted recombination 
was ineffective in only ?4% of the populations per trait. 
This low frequency suggests that targeted recombina-
tion will usually be superior to nontargeted recombina-
tion. The infrequent values of RETargeted < 100% were due 
to having more than two nontargeted recombinations 
on some chromosomes. A larger number of targeted 
recombinations (x > 2 per chromosome) is expected to 
increase the gains from targeted recombination, but 
achieving more than one to two targeted recombinations 
per chromosome will likely be difficult. Furthermore, the 
gains with nontargeted recombination can be increased 
by growing a larger population and selecting the best 
individual. But because the standardized selection dif-
ferential is not a linear function of the proportion of 
individuals selected, more-stringent selection is unable to 
double the gains with nontargeted recombination when 
the initial population is already large (Bernardo, 2017). 
However, for the 4% of populations for which targeted 
recombination is ineffective, selecting the best individual 
out of a larger population could be a feasible approach.

The RETargeted values tended to decrease as the marker 
similarity between the parents of the biparental cross 
increased (r ≈ −0.25). However, the effectiveness of tar-
geted recombination was not associated with variation in 
h2, rMP, and rMG (assuming h2 > 0). That being said, breed-
ers need to consider both the RETargeted values and the 
response to targeted recombination, as a high RETargeted 
value is not meaningful if the gains (RTargeted) for yield in 
megagrams per hectare or moisture in grams per kilogram 
are small. Higher values of h2, rMP, and rMG are known to 
increase the response to genomewide selection and higher 
values of these three parameters are therefore desirable.

Our results showed that targeted recombination does 
not need to occur on all chromosomes to achieve equal 
or greater gains compared with nontargeted recombina-
tion. This result was consistent with the results for the B73 
´ Mo17 maize population (Bernardo, 2017). Individual 

chromosomes accounted for different proportions to the 
total predicted gains, and having targeted recombination 
on about three (for yield and test weight) to seven (for 
moisture) chromosomes was predicted to achieve equal or 
greater gains than nontargeted recombination.

The RTargeted values were for a doubled haploid, whereas 
the RNontargeted values were for the best F3 line. We did not 
expect this difference in inbreeding level to affect our 
results because, from theory, the expected testcross geno-
typic value of a homozygous line is equal to the testcross 
genotypic value of the F3 (or other selfing generation) line 
from which the homozygous line was derived (Bernardo, 
1991). These theoretical results are supported by maize 
empirical data that showed that the mean testcross perfor-
mance (across five testers) of the best S1 line out of 50 (7.92 
Mg ha−1) was very close to the testcross performance of the 
best S8 line out of 50 (8.10 Mg ha−1) (Lopez-Perez, 1979). 
Therefore, we expect a similar RNontargeted if we could have 
estimated it for a doubled haploid.

Designing a Maize Breeding Program that 
Incorporates Targeted Recombination
The variation in RETargeted, per-chromosome contribu-
tions, and targeted-recombination positions indicated 
that prioritization of breeding populations, chromo-
somes, and traits will be important in targeted recom-
bination. The breeding populations that are prime 
candidates for targeted recombination will obviously be 
those that combine a high RETargeted and RTargeted. Crosses 
between closely related inbreds, which have a high 
marker similarity, will likely be excluded. Given that the 
position of a targeted recombination affects the perfor-
mance for multiple traits, a selection index can be used. 
One or two targeted-recombination positions per chro-
mosome can then be identified to maximize the selection 
index value. Targeted recombination on all chromosomes 
might be infeasible. If so, breeders will need to determine 
how much gain can be achieved if targeted recombina-
tion is done on a certain subset of chromosomes and 
selection on the remaining chromosomes is for the best 
natural recombinants (Bernardo, 2017).

The training population for obtaining the marker 
effects also needs to be chosen. In the A/B model (Jacob-
son et al., 2014), the training population is genetically 
identical to the population in which targeted recombi-
nation will be done. Therefore, the A/B model is likely 
preferable as long as the number of lines in the A/B cross 

Table 2. Percentage of maize F2 populations (with heritability on an entry-mean basis > 0) for which targeted-recombination positions were 
common for different numbers of traits.

No. of targeted recombinations 
per chromosome (x)

Traits with same targeted-
recombination position

Chromosome
1 2 3 4 5 6 7 8 9 10

1 3 3 4 8 3 5 19 6 8 19 7
2 24 33 36 30 33 42 38 31 46 37
0 73 63 56 66 62 39 55 61 35 55

2 3 3, 3 5, 3 7, 6 2, 2 5, 5 17, 18 5, 7 7, 7 19, 18 6, 7
2 26, 27 33, 32 33, 36 25, 31 34, 30 38, 39 35, 31 32, 34 41, 42 38, 38
0 71, 70 62, 64 59, 58 73, 67 62, 65 45, 43 60, 62 61, 59 39, 40 56, 54
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is large enough to obtain high values of rMP. However, 
a disadvantage of the A/B model is that progeny in the 
A/B cross need to be phenotyped to estimate the marker 
effects. An alternative is to use the GCA model, in which 
the use of prior A/* and */B crosses as the training popu-
lation circumvents the need to phenotype progeny in the 
A/B cross (Jacobson et al., 2014).

Targeted recombination can be achieved in two ways. 
The most feasible way involves screening and pyramiding 
recombination events with a procedure similar to marker-
assisted backcrossing. In concept, this approach involves 
performing foreground selection for chromosomes that 
carry a targeted recombination and background selec-
tion across the rest of the chromosomes (Bernardo, 2017). 
Marker-assisted backcrossing of transgenes involves the 
introgression of double-recombination events because the 
transgenes are flanked on each side by a recombination 
event. Approaches for marker-assisted gene pyramiding 
(Servin et al., 2004; De Beukelaer et al., 2015) should there-
fore readily apply to pyramiding double targeted recom-
binations (x = 2) on multiple chromosomes, although 
the chromosomal segment between two targeted recom-
binations is likely to be longer than the transgene. The 
approach would be slightly different for pyramiding single 
targeted recombinations (x = 1) per chromosome.

A second way of achieving targeted recombination 
involves CRISPR (clustered regularly interspaced short pal-
indromic repeats) technology (Cong et al., 2013; Ran et al., 
2013; Hsu et al., 2014). A CRISPR system has been used to 
induce mitotic targeted recombination for fine mapping a 
gene for manganese sensitivity in yeast (Sadhu et al., 2016). 
In addition, CRISPR has been used for targeted recombina-
tion in cultivated tomato (Solanum lycopersicum L.) and 
wild tomato (S. pimpinellifolium L.) (Filler Hayut et al., 
2017). For crop plants, a protocol that involves a multiplex 
CRISPR system for inducing homologous recombinations, 
screening cells with the targeted recombinations, and 
regenerating cells into plants is yet to be developed. Thus, 
the feasibility of CRISPR technology for routinely inducing 
targeted recombination in plants is still unknown.

The development of protocols for targeted recombi-
nation, either by pyramiding natural combinations or by 
the use of CRISPR, involves many logistical and techni-
cal details that will need to be resolved. Such details are 
well beyond the scope of this study. Nevertheless, we 
are currently conducting proof-of-concept studies that 
involve pyramiding natural recombinations to validate 
the predicted gains from targeted recombination in elite 
maize germplasm.
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