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Abstract
The goals of quantitative genetics differ according to its field of application. In plant breeding, the main focus of quantitative
genetics is on identifying candidates with the best genotypic value for a target population of environments. Keeping
quantitative genetics current requires keeping old concepts that remain useful, letting go of what has become archaic, and
introducing new concepts and methods that support contemporary breeding. The core concept of continuous variation being
due to multiple Mendelian loci remains unchanged. Because the entirety of germplasm available in a breeding program is not
in Hardy–Weinberg equilibrium, classical concepts that assume random mating, such as the average effect of an allele and
additive variance, need to be retired in plant breeding. Doing so is feasible because with molecular markers, mixed-model
approaches that require minimal genetic assumptions can be used for best linear unbiased estimation (BLUE) and prediction.
Plant breeding would benefit from borrowing approaches found useful in other disciplines. Examples include reliability as a
new measure of the influence of genetic versus nongenetic effects, and operations research and simulation approaches for
designing breeding programs. The genetic entities in such simulations should not be generic but should be represented by the
pedigrees, marker data, and phenotypic data for the actual germplasm in a breeding program. Over the years, quantitative
genetics in plant breeding has become increasingly empirical and computational and less grounded in theory. This trend will
continue as the amount and types of data available in a breeding program increase.

Introduction

The marriage between quantitative genetics and plant
breeding, albeit nonexclusive, has reaped benefits for both
during the last 100 years. Estimates of genetic variances and
heritability in many plant species have increased our under-
standing of the inheritance and variation of important traits
related to yield, quality, and adaptation (Gardner 1963; Mat-
zinger 1963; Hallauer and Miranda 1988). Quantitative
genetics principles have led to the design and refinement of
breeding methods for continuous traits (Dudley and Moll
1969). Mapping studies have identified major quantitative trait

loci (QTL) that have been found useful in crop improvement,
and that have helped elucidate the nature of quantitative var-
iation (Kearsey and Farquhar 1998; Bernardo 2020).

That being said, developments in both plant breeding and
quantitative genetics in the last several decades should cause
us to pause and ponder how quantitative genetics can best be
applied in contemporary plant breeding. The purpose of this
Opinion article is to provide a framework for reflection,
discussion, and constructive debate of reasons and ways to
reinvent quantitative genetics within the context of current
plant breeding. The ideas proposed herein apply mainly to
this context and they might not apply to other fields, such as
human genetics and animal improvement, where quantitative
genetics has also played an important role.

Origins and foundations of quantitative
genetics

Plant breeders may sometimes think that quantitative
genetics was developed for the purpose of enhancing plant
and animal improvement. After all, most economically
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important traits in crops and livestock species are quanti-
tative rather than qualitative. However, quantitative genetics
was developed not to provide a basis for artificial selection
in different species, but to model how variation for con-
tinuous traits arises from unknown genes. Quantitative
genetics originated more than a century ago in the aftermath
of a heated dispute between two groups of eminent English
scientists: the biometricians led by Karl Pearson and W.F.R.
Weldon, and the Mendelists led by William Bateson (Pro-
vine 1971).

The field of biometry began with Francis Galton’s work
on how human characteristics, particularly height, were
passed from parent to offspring (Galton 1869, 1889). Galton
observed a regression toward mediocrity (now known as
regression toward the mean) in that tall parents tended to
have offspring shorter than them, and short parents tended
to have offspring taller than them. For height, Galton esti-
mated that the regression of offspring on mid-parent values
was 2/3. To illustrate, suppose the mean height of a father
and mother exceeded the mean of the population by 9 cm.
The height of their offspring would vary but, on average,
was expected to exceed the population mean by 2/3 × 9=
6 cm. Pearson later analyzed Galton’s data as well as sub-
sequent data (Pearson and Lee 1903), and found that the
correlation of the height of fathers and mothers with the
height of their sons and daughters had a mean of 0.51.
Fraternal correlations were found to be slightly higher
(mean of 0.53) than parent–offspring correlations. Overall,
these studies by Galton and Pearson suggested that con-
tinuous variation in humans is at least partially inherited,
although the mechanisms for the transmission of such traits
remained a mystery.

These findings by the biometricians disagreed with
Mendel’s findings, which were rediscovered independently
in 1900 by Hugo DeVries, Carl Correns, and Erich von
Tschermak. Mendel’s results indicated a particulate nature
of inheritance that led to distinct classes, rather than a
continuum of observations for a given trait. The absence of
distinct phenotypic classes then suggested to the Mendelists
that continuous traits are not heritable. DeVries went to the
extent of considering the continuous versus discontinuous
nature of variation as a criterion for a trait’s transmissibility
(Mather 1949).

In 1918, R.A. Fisher wrote a paper entitled “The corre-
lation between relatives on the supposition of Mendelian
inheritance” that sought to reconcile the conflicting views
of the biometricians and Mendelists. In so doing, this
seminal article established the foundations of quantitative
genetics as we know it today. The “on the supposition“
phrase in the title indicated the conjecture that quantitative
traits are controlled by genes that behave in a Mendelian
fashion, and the crux of Fisher’s supposition was that
continuous variation is the result of the cumulative effects

of many such genes. Fisher showed that such a model for
quantitative variation could lead to the well-established
correlations between relatives found by the biometricians.
Fisher initially made two key assumptions to make the
model tractable: the individuals mated at random, and each
biallelic locus behaved independently of others. These two
simplifying assumptions enabled genotype frequencies to
be expressed in terms of allele frequencies and vice versa
according to Hardy–Weinberg equilibrium, and allowed the
cumulative effects across loci to be described in terms of the
effect at an individual locus. At several junctures in his
article, Fisher investigated the effects of multiple alleles,
linkage, assortative mating, and epistasis.

A key feature of Fisher’s derivations was the partitioning of
effects into a transmissible and a non-transmissible portion. The
transmissible or “additive” portion was due to the effects of
individual alleles passed on by a parent to its offspring. These
transmissible effects of alleles have since become known as the
average effect of an allele (Fisher 1941). The variance due to
the average effects of the two alleles at a locus in a diploid has
since become known as additive variance (VA). On the other
hand, the non-transmissible portion of effects included dom-
inance deviations as well as any environmental effects; to
Fisher, dominance deviations were “a residue which acts in
much the same way as an arbitrary error introduced into the
measurements.” The variance due to dominance deviations has
since become known as dominance variance (VD). Fisher
recognized the existence of effects due to interactions of alleles
at different loci and treated such effects as higher-order
extensions in a linear model: “We may use the term Epistacy to
describe such deviation, which although potentially more
complicated, has similar statistical effects to dominance.”

Fisher revisited Galton’s concept of parent–offspring
regression and derived this regression as being equal to
½VA/(VA+ VD). Because Fisher treated VD as a residual
value that was not any different from random error, we can
modify this parent–offspring regression as being equal to
½VA/VP=½h2, where VP is the phenotypic variance and
h2= VA/VP is the narrow-sense heritability. Returning to our
height example, suppose the difference between the height
of a father and the population mean is denoted by S. If the
height of the father and mother is uncorrelated (i.e., mating
is at random with respect to height), the expected deviation
(from the population mean) of the height of the offspring is
then equal to ½h2S.

We see this expression as clearly being related to the so-
called breeder’s equation of R= h2S, where R is the
response to selection and S is the selection differential (Lush
1937). The factor of ½ is due to regression on only one of
the two parents, and this situation is equivalent to mass
selection without pollen control in plants, for which the
genetic gain quantified via R is equal to ½h2S. This brief
historical summary shows that although quantitative

376 R. Bernardo



genetics was initially developed as a basic rather than an
applied science, quantitative genetics does provide a fra-
mework for designing breeding programs that can maximize
genetic gain.

Why reinvent quantitative genetics for plant
breeding?

Through the years, scientists have investigated the con-
fluence of the science of quantitative genetics and the pro-
cess of plant breeding. The 1940s saw investigations of the
genetic basis of heterosis (Comstock and Robinson 1948;
Robinson et al. 1949) and the development of recurrent
selection procedures (Jenkins 1940; Hull 1945; Comstock
et al. 1949) to address perceived limitations in line and
hybrid development (Jenkins 1934). The 1950s and 1960s
have been described as the golden era for quantitative
genetics in plant breeding (Gardner 1977), given the
research during these two decades on covariances between
relatives (Kempthorne 1954; Cockerham 1956); mating
designs to estimate VA, VD, and epistatic variance (Com-
stock and Robinson 1952; Cockerham 1963); empirical
estimates of genetic variances in different plant species
(reviewed by Gardner 1963; Matzinger 1963; Hallauer and
Miranda 1988); genotype × environment interaction (Spra-
gue and Federer 1951); stability analysis (Finlay and
Wilkinson 1963; Eberhart and Russell 1966); and index
selection for multiple traits (Brim et al. 1959; Pešek and
Baker 1969). The 1970s saw the start of investigations of
isozymes as markers for quantitative traits (Stuber and Moll
1972; Hamrick and Allard 1975). Long-overdue work
started in the 1980s on formal methods to select parents in
breeding programs (Dudley 1984). “Bandwagons” related
to plant breeding from the 1990s to the present (Bernardo
2016) have included linkage mapping of QTL, association
mapping, genomewide prediction (or genomic selection),
phenomics, envirotyping, and gene editing.

Plant breeding in the 2020s is markedly different from
plant breeding in decades past, and some of the older
quantitative genetics approaches described in the preceding
paragraph may have become irrelevant. Described below
are three reasons for reinventing quantitative genetics as it
applies to plant breeding: different expectations, unmet
assumptions, and new tools.

What breeders expect from quantitative genetics
has changed

A half-century ago, plant breeders expected quantitative
genetics to provide answers to multiple questions (Dudley
and Moll 1969) that can be distilled into three:

(1) Which germplasm is the most promising?
(2) What type of variety or cultivar should be developed?
(3) What breeding method should be used?

Methods in quantitative genetics could indeed provide
answers to each of the above questions. A set of germplasm
that has a superior mean and a large VA would constitute
promising breeding germplasm, and information on the
mean and genetic variance can be combined into a useful-
ness criterion (Schnell 1983) that estimates the mean of a
selected proportion of the best individuals in a given
population. A large amount of heterosis and VD, as has been
found for maize (Zea mays L.) yield (Hallauer and Miranda
1988), would indicate that hybrid or synthetic cultivars are
suitable. Versions of the breeder’s equation for different
types of recurrent selection procedures could be used, along
with estimates of VA, VD, and nongenetic variance, to
identify which breeding procedures would lead to the lar-
gest predicted gain.

The reality, however, is that sufficient answers to the first
two questions are obtained without any detailed
quantitative-genetic analysis whatsoever. For example, a
large set of germplasm can be phenotyped to identify can-
didates with the best mean performance. Information on
germplasm origins or, since the 1990s, data on molecular
markers can be used to assess germplasm diversity. Hybrid
cultivars are feasible if a hybrid outperforms its parents by a
substantial amount, and if hybrid seeds can be produced in a
cost-effective manner, with estimates of VD being unne-
cessary. As for the third question, the predicted R differs
across recurrent selection methods such as recurrent mass
selection, half-sib recurrent selection, full-sib recurrent
selection, or reciprocal recurrent selection. However, bree-
ders of major crop species such as maize, wheat (Triticum
aestivum L.), rice (Oryza sativa L.), soybean (Glycine max
(L.) Merrill), and tomato (Solanum lycopersicum) have
preferred the expediency of a nonrecurrent line and hybrid
development system with biparental crosses instead of
longer-term recurrent selection with broadbase populations.
Because the variance among recombinant inbreds in a
biparental cross is constant at 2 VA, there is little or no
difference in the gains from line development via different
methods (pedigree breeding, bulk method, single-seed
descent, or doubled haploids) as long as reliable pheno-
typing of lines is done at some point during the line
development process.

What, then, do current plant breeders expect from
quantitative genetics? Today’s plant breeders expect one
primary outcome from quantitative genetics: to help identify
which candidates have the best genotypic value for a given
set of continuous traits, with genotypic value being defined
as the expectation of the performance of the candidate in a

Reinventing quantitative genetics for plant breeding: something old, something new, something borrowed,. . . 377



target population of environments. The candidates would be
individual plants, partially inbred lines, or recombinant
inbreds in a self-pollinated species such as wheat; test-
crosses or hybrids in a cross-pollinated species such as
maize; or individual clones in an asexually propagated
species such as cassava (Manihot esculenta). This singular
emphasis on finding lines, hybrids, or clones with the best
genotypic value is a much more focused objective than the
above three questions from 50 years ago (Dudley and Moll
1969). This singular emphasis suggests that some of the
classical methods used in quantitative genetics to address
broader sets of questions have outlived their usefulness.

Classical assumptions in quantitative genetics are
unmet in plant breeding

The two main assumptions invoked by Fisher (1918)—
random mating and independence of segregating loci—are
typically unmet in plant breeding programs. The assumption
of random mating is met in species for which recurrent
selection is the main breeding procedure, because each
cycle of recurrent selection is created by random mating a
group of selected individuals in the previous cycle. Recur-
rent selection is common in forage species such as alfalfa
(Medicago sativa L.) and perennial ryegrass (Lolium per-
enne L.) but, as mentioned above, not in row crops such as
maize and wheat. The F2 of a biparental cross between
homozygous maize or wheat parents has the same 1:2:1
genotype ratio attained via random mating. Each F2 popu-
lation can therefore be treated as a random-mating popula-
tion, and VA, VD, and h

2 can be estimated, but such estimates
apply only within the given F2 population.

In most situations, the entirety of germplasm within a
breeding program does not comprise a random-mating
population. Maize-breeding germplasm in the United States,
for example, includes lines derived from key progenitors,
such as A632, B37, B73, Iodent, LH82, Maiz Amargo,
Minnesota 13, Mo17, and Oh43 (Troyer 1999; Mikel and
Dudley 2006). Maize breeding has focused on developing
newer versions of inbreds that maintain these lineages or
that combine only a few of these lineages at a time. The
preponderance of these key lineages indicates that the maize
germplasm in the breeding program cannot, as a whole, be
assumed as representative of a random-mating population.

The assumption of linkage equilibrium or indepen-
dence among segregating loci is particularly problematic
(Cockerham 1963). Multiple generations of random mat-
ing are needed to achieve linkage equilibrium, especially
for closely linked loci. While geneticists are sometimes
able to create mapping populations that have undergone
multiple generations of random mating (e.g., intermated
B73 × Mo17 maize population (Lee et al. 2002)), breeders
do not have that luxury in cultivar development programs.

The failure in plant breeding to meet the two main
assumptions that underlie classical quantitative genetics
theory indicates a need to revisit such theory or find ways
to circumvent the assumptions.

New tools and computing capabilities have
emerged

Two technological developments have enabled new
approaches in both quantitative genetics and plant breeding.
First, cheap and abundant molecular markers in different
plant species have allowed new types of analysis that were
not possible prior to the 1980s. Breeders and geneticists
were limited to the use of only up to a few dozen isozyme
markers in the 1970s, but the number of available markers
increased with the development of restriction fragment
length polymorphism (RFLP) markers in the 1980s (Beck-
mann and Soller 1983). Other types of markers developed
after RFLP markers included random amplified poly-
morphic DNA markers, amplified fragment length poly-
morphism markers, and simple sequence repeat markers.
The number of markers increased drastically with the
development of single nucleotide polymorphism (SNP)
markers which, unlike previous marker systems, are
amenable to high-throughput genotyping platforms (Syvä-
nen 2005). The costs of SNP genotyping have decreased
since the 2010s to the extent that in major crop species, the
per-sample cost of genotyping (Ertiro et al. 2015) is less
than the per-individual cost of multi-environment pheno-
typing (http://techservicespro.com/).

Second, developments in computers have enhanced data
analysis and simulation. G.F. Sprague, a renowned maize
breeder who developed the concepts of general and specific
combining ability in the 1940s (Sprague and Tatum 1942),
once told me that in his day, having a winter nursery was
infeasible because yield data from the fall harvest could not
be analyzed in time to select candidates to include in a
winter nursery. When I started my career with a seed
company in 1988, data from a given year’s yield trials were
used only for the purpose of selecting the best lines and
hybrids that year. Such data were not yet viewed as a
valuable contribution to a cumulative, historical data set
useful for predicting the performance of candidates in future
years. This mindset within the company started to change
after I developed genomic best linear unbiased prediction
(GBLUP) for single-cross performance in 1994, with the
first GBLUP calculations being implemented on a Pentium
90 machine that had 64 megabytes of random access
memory (Bernardo 1994). Today’s computers allow large-
scale data analysis, such as solving a system of equations
with up to 2 million unknowns (Gray 2016), and statistical
resampling procedures, such as bootstrapping and cross-
validation (Efron 1980), that were not possible before.
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Something old, something new, something
borrowed, something BLUE

Reinventing quantitative genetics for plant breeding
requires revisiting classical concepts and approaches in
quantitative genetics, keeping what remains useful, letting
go of what has become obsolete, and considering new ideas.
One may question whether a reinvention is needed, because
an alternative approach is to simply let the language of
quantitative genetics evolve with both use and misuse, to
the extent that some current practices might bear little
pertinence to the original concepts. We as practitioners
would still be able to effectively communicate with each
other because we all uniformly follow the same practices. A
premise in this Opinion article, however, is that if we wish
our science to be precise and rigorous, we then should be
precise in defining key concepts and rigorous in adhering to
them. The stance herein is that it is better to invent new
concepts to accommodate new developments rather than to
force new developments into classical concepts that might
not be able to accommodate them.

Described below are eight main ideas that could underlie
neoquantitative genetics for plant breeding. These ideas are
organized according to the old English rhyme of “some-
thing old, something new, something borrowed, something
blue.”

Old: multiple loci plus environmental effects

As postulated by Fisher (1918), continuous variation will
continue to be modeled as being due to the joint effects of
multiple Mendelian loci. No assumptions need to be made
regarding the number of underlying QTL. For most traits,
however, the number of QTL is expected to be large and
their individual effects are expected to be small.

The core model for quantitative variation will remain
P=G+ E, where P is the phenotypic value, G is the
genotypic value, and E is a residual value due to nongenetic
effects. More specifically, the phenotypic value of genotype
i in environment j is modeled as

Yij ¼ μþ gi þ ej þ ðgeÞij þ εij ð1Þ

where µ is the grand mean; gi is the effect of genotype i; ej is
the effect of environment j; (ge)ij is the genotype ×
environment interaction effect associated with genotype i
and environment j; and ɛij is the within-environment error.
This classical linear model remains unchanged. However,
there may be multiple ways to model the gi, ej, and (ge)ij
components. For example, (ge)ij can itself be modeled as a
multiplicative effect obtained as the product of an
interaction score due to genotype i and an interaction score
due to environment j (Gollob 1968; Gauch 1988).

Envirotyping can be used to model the ej component, at
least in part, as a function of environmental variables such
as precipitation and temperature (Cooper et al. 2014).

Old: identify candidates with the best genotypic
value

Plant breeders have always been interested in identifying
and selecting candidates with the best genotypic value, and
these efforts will intensify as the number of candidates
increases due to expansion of breeding programs. Plant
breeding has always been predictive in the sense that in the
P=G+ E equation, the G component is predicted from the
observed P. Predictions of G from P will obviously become
more precise as E approaches zero. Methods to make phe-
notyping more accurate and precise, so that E approaches
zero, will continue to be important.

Phenotypic data routinely generated in a breeding pro-
gram and SNP markers have been found useful for pre-
dicting the genotypic values of other candidates (see
Bernardo (2020) for a review). Such predictions are com-
monly made via GBLUP, in which SNP markers are used to
estimate relatedness among individuals (Lynch 1988;
VanRaden 2008), or via an approach such as ridge
regression–best linear unbiased prediction (RR–BLUP), in
which the effects of each SNP marker are calculated from a
set of related individuals (Meuwissen et al. 2001). The
GBLUP and RR–BLUP approaches are equivalent when the
number of QTL is large, no major QTL are present, and the
QTL are evenly distributed across the genome (Fernando
1998; Habier et al. 2007). Given that GBLUP was devel-
oped more than a quarter-century ago (Bernardo 1994) and
genomewide prediction via RR–BLUP or Bayesian models
was proposed nearly 20 years ago (Meuwissen et al. 2001),
we must consider both approaches for predicting genotypic
value as old.

Old: continue finding major QTL

Major QTL alleles, such as Fhb1 for Fusarium (F. grami-
nearum) head blight resistance in wheat (Anderson et al.
2007) and Sub1 for flooding tolerance in rice (Septiningsih
et al. 2009), will continue to be useful in cultivar devel-
opment. A major QTL has an effect large and consistent
enough to be meaningful in a breeding program, which
implies that a QTL might be considered as major in one
breeding program but not in another (Bernardo 2014a).
Major QTL may be present for traits such as morphology,
phenology, and tolerance to biotic and abiotic stresses, but
are likely absent for a highly selected trait such as yield in
elite germplasm.

The expected change in the mean value for the trait
should be used as the criterion to assess whether or not a
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marker-trait association represents a major QTL. The R2

value should not be used as the criterion because a high R2

value may correspond to too small a predicted change. For
example, studies at the University of Minnesota identified a
marker with R2= 27% for oil concentration in maize
(Garcia 2008). The positive QTL allele was predicted to
increase kernel oil concentration from 3.5 to 5.5%. Because
high-oil maize hybrids with up to 8.0% oil have been
commercially available (Lambert et al. 1998), the effect of
the QTL is deemed too small for it to be considered as a
major QTL in maize breeding (Bernardo 2020).

New: no need for a reference population in
Hardy–Weinberg equilibrium

As mentioned earlier, Fisher’s (1918) assumption of having
a random-mating population is typically violated in plant
breeding. It is high time to openly acknowledge this fact
rather than to pretend, by estimating parameters such as VA

and h2 in a nonrandom-mated population (Sughroue and
Hallauer 1997) or diversity panel, that the assumption of a
random-mating population is met. Fisher’s assumption of
random mating was a matter of necessity in 1918. In con-
trast, today’s availability of SNP markers allows breeders to
track the transmission of chromosomal segments, and ran-
dom mating therefore does not need to be assumed. Fur-
thermore, because breeders are mainly interested in
identifying candidates with superior genotypic values, there
is no need to have a reference population to which infer-
ences would apply—regardless of whether or not such a
reference population in Hardy–Weinberg exists.

To illustrate, suppose recombinant inbreds are developed
by selfing from a (Parent 1 × Parent 2)F2 and from a ((Parent
1 × Parent 2) × Parent 1)BC1. Whereas the F2 population
can be assumed to behave as a random-mating population
because the expected genotype ratio of 1:2:1 at segregating
loci is the same as that with random mating, the same
assumption cannot be made for the BC1 population because
the expected genotype ratio is 1:1 at segregating loci, with
one of the homozygotes not being recovered. At this point,
the breeder is simply interested in identifying the best
recombinant inbreds, regardless of whether an inbred was
derived from the F2 or the BC1. The breeder has no need to
make inferences regarding the mean or VA or h

2 in the F2 or
BC1, and it is therefore moot that one population is in
Hardy–Weinberg equilibrium and the other is not.

The preceding example also brings to light the historical
divergence between two schools of thought in quantitative
genetics: the Edinburgh/Alan Robertson/Falconer (1960)
school that emphasized arbitrary allele frequencies in random-
mating, outbred populations versus the Birmingham/Mather
(1949) school that focused on crosses between homozygous
lines for which allele frequencies are expected to be ½ at

segregating loci. While the Edinburgh school has become more
prevalent in plant and animal breeding because of its emphasis
on artificial selection with arbitrary allele frequencies, the
Birmingham school has features that lend themselves naturally
to plant breeding as practiced today. At the same time, allele
frequencies of ½ are easily accommodated in the Edinburgh
framework, and the F2 genotype frequencies are those expected
with random mating. Both the Edinburgh and Birmingham
schools therefore apply to F2 populations encountered in plant
breeding.

Not needing a reference population also circumvents the
issue of whether the candidates are random members of a
base population or are a fixed set of lines, clones, or hybrids
that are not random members of any population. Suppose
the candidates are a set of wheat cultivars and pre-
commercial lines with diverse genetic backgrounds. In
this situation, the variance component for lines (if the lines
were random) is substituted by ∑ci

2/(n− 1), where ci is the
fixed effect of the ith candidate and n is the number of
candidates.

New: no need to define different types of genetic
variances

Classical quantitative genetics as founded by Fisher (1918)
focused on breeding value. However, breeding value is of
minimal value to plant breeders for two reasons. First, plant
breeders are much more interested in genotypic value than
on breeding value. The genotypic value is that of the can-
didate itself, whereas the breeding value is reflected by the
mean of the candidate’s progeny when it is mated with
random individuals. To illustrate a key difference between
animal and plant breeding, the breeding value of a dairy bull
(Bos taurus) is of utmost importance because a top bull is
prized not for its own milk yield (which is zero), but it is
prized for the superior milk yield of its female progeny. In
contrast, the genotypic value of a wheat line or a cassava
clone is of utmost importance because producers would
grow the wheat or cassava cultivar itself, rather than the
cultivar’s progeny. The ability to genetically replicate plants
but not animals therefore plays a key role in this distinction.
The foregoing does not imply that breeders are uninterested
in the performance of the progeny of an individual: on the
contrary, selection of good parents is a key to success in
plant breeding. What the foregoing implies is that indivi-
duals used as future parents are first and foremost selected
on the basis of their superior genotypic value as individuals.

Second, breeding value is defined only when the mate is
chosen at random and, as Falconer (1985) indicated, “The
concept of breeding value is shown to have no useful
meaning when mating is not random.” The assumption of
random mating, as discussed earlier, is typically violated in
plant breeding.
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If we accept that the classical concept of breeding value
is not meaningful to plant breeders, neither would VA be
meaningful because VA is the variance among breeding
values. The VD and epistatic variance (VI) would likewise
not be meaningful because these variances are derived from
the same framework as VA. Therefore, quantitative genetics
reinvented for plant breeding would retire the concepts of
VA, VD, and VI. On the other hand, plant breeding students
will still need to learn about VA, VD, and VI so that they can
understand classical literature and communicate with
quantitative geneticists who work with non-plant species,
for which these concepts remain important.

What then should be used as a substitute for VA, VD, and
VI? The logical alternative is to simply calculate the var-
iance component due to the candidates. In other words,
breeders can calculate VF2 among F2 plants; VF3 among F3
lines; VRI among recombinant inbreds; VClones among
clones; VHS among half-sib families; VFS among full-sib
families; and VSX among single crosses. Single crosses are
typically made between parents from two heterotic groups
that complement each other, and VSX can be partitioned into
VGCA1 for the general combining ability (GCA) of parents
from the first heterotic group, VGCA2 for the GCA of parents
from the second heterotic group, and VSCA for specific
combining ability effects. It will be important to not use the
symbol VG for any of these variance components because
VG is traditionally defined as the sum of VA+ VD+ VI.
Avoiding the VG notation will therefore reduce confusion.

Calculating variance components such as VF2 or VClones

or VSX has the advantage of being a direct expression of the
variation due to genetic effects among the candidates
undergoing selection. As previously mentioned, for exam-
ple, the variance component for recombinant inbreds is VRI=
2 VA. The VRI therefore quantifies the amount of genetic
variation expressed among the candidates, whereas VA by
itself does not. Fisher’s (1918) assumption of linkage
equilibrium is unnecessary for defining and estimating
variance components for candidates.

Mating designs such as the factorial, nested, and diallel
designs have been developed to estimate VA and VD

(Cockerham 1963). This proposal renders such mating
designs obsolete. Variance components due to candidates,
as listed above, can instead be estimated by restricted
maximum likelihood methods (Dempster et al. 1977;
Harville 1977) within the framework of mixed-model ana-
lysis, which is described at the end of this paper.

Borrowed: focus on reliability and the least
significant difference

Retiring the concepts of VA, VD, and VI also means retiring the
concept of h2. This should be of little practical consequence
because, as previously mentioned, h2 measures the proportion

of transmissible genetic effects, whereas breeders are more
interested in the performance of the candidates themselves
rather the performance of their progeny. On the other hand,
plant breeders will continue to be interested in the influence of
nature versus nurture on quantitative traits. Broad-sense herit-
ability, which is defined as H= (VA+VD+VI)/VP, has tradi-
tionally provided such measure. Calling H as a form of
“heritability” is oxymoronic because dominance and non-
additive types of epistatic effects captured in H are nonheritable
from a parent to its offspring.

The concepts of h2 and H have actually been recognized
as being muddled in plants as far back as the 1960s (Hanson
1963). The definition of h2 is straightforward in animals
because an individual animal is both the selection unit and
the basis for defining h2. In contrast, an individual plant is
the selection unit in mass selection but not in other breeding
procedures that have been used in plants. Suppose selection
is conducted among half-sib families developed from a
random-mating population of perennial ryegrass. The full
amount of VA is expressed among individual plants in the
random-mating population. But when h2 is estimated by
rearranging the breeder’s equation as h2= R/S, the
numerator of the resulting h2 has ¼VA instead of (1)VA

because only a quarter of the VA is expressed among half-sib
families. Hanson (1963) concluded that the definition of
heritability in plants “becomes lost in a maze of confusion”
and he raised the need (but was reluctant) to consider an
alternative to h2 and H.

The concept of “reliability” can be borrowed as an
alternative measure of the influence of nature versus nurture
on phenotypic measurements (Bernardo 2020). Reliability
is defined as the consistency of a test or measurement, and
reliability has been widely used to gauge the quality of tests
in educational, behavioral, and industrial settings (Cronbach
1951). For example, a university admission test is con-
sidered reliable if the same student obtains similar scores
when taking different editions or versions of the test
(assuming that the student’s ability remains the same across
retakes). There are several ways of measuring reliability,
one of which is VSubjects/(VSubjects+ Ve), where VSubjects is the
variance component due to subjects and Ve is the error
variance. In plant breeding, reliability can be defined as the
variance component due to the candidates divided by VP.

Reliability, which we denote by i2, is then strictly tied to
the selection unit used. If selection is among recombinant
inbreds, reliability is i2RI= VRI/VP(RI), where VP(RI) is the
phenotypic variance among recombinant inbreds. If selec-
tion is among clones, reliability is i2Clones= VClones/VP(Clones).
The VP should be calculated on an entry-mean basis. Sup-
pose that cassava clones are evaluated in e environments
with r replications in each environment. The VP(Clones) is
calculated as VClones+ (1/e)(VClones × Environments)+ (1/re)Vɛ,
where Vɛ is the within-environment error variance.
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Repeatability has been used as a measure of consistency
among repeated measurements (Falconer 1960). While
reliability is similar to repeatability, the two are different
because repeatability can refer to multiple measurements on
the same individuals over space (e.g., measurements on
multiple fruits from the same tree) or time (e.g., multiple
harvests from the same plants), whereas reliability pertains
to multiple measurements (e.g., in different environments)
that are independent of each other (Bernardo 2020). In
plants, repeatability has been commonly used to measure
the consistency among multiple harvests in perennial forage
species (Casler et al. 2008; Braz et al. 2015). Repeatability
has also been proposed to refer to estimates of heritability
when “a nonrandom sample of genotypes is evaluated”
(Fehr 1987). Such proposal leads to confusion because it
adds a second meaning different from the original concept
of repeatability as described by Falconer (1960). The con-
cept of reliability therefore fills a long-time void that neither
heritability nor repeatability (Falconer 1960) have filled.

While a high i2 indicates consistent measurements,
information on what constitutes a statistically significant
difference would also be helpful for the purposes of selec-
tion. For example, breeders might be aware that h2 is about
0.40 for Fusarium head blight resistance, but they might be
surprised to find that this level of h2 could correspond to a
line having 0% infection in one test and 7% in a different
test. As a standard practice, it would be helpful to report
estimates of both i2 and the least significant difference, e.g.,
“Among recombinant inbreds, estimates of reliability and
the least significant difference (in parentheses; P= 0.10)
were 0.50 (0.72 Mg ha–1) for yield, 0.70 (0.85%) for protein
percentage, and 0.40 (8.5%) for Fusarium head blight
incidence.” Relaxed significance levels (P= 0.10 or 0.20)
are recommended, given the relative impacts of a Type I
error versus a Type II error in cultivar evaluation (Carmer
1976).

Borrowed: simulation approach to design a
breeding program

Plant breeding for major species is like a factory process in
which raw materials (germplasm) are input into a manu-
facturing system (line, hybrid, or clone development) to
have products (cultivars) that are marketed and distributed
after rigorous testing and quality control (multi-environ-
ment trials) (Bernardo 2020). Individual components of a
breeding program can be designed quite easily. For exam-
ple, the parents crossed to form new breeding populations
can be selected according to superior performance for
multiple traits and SNP diversity between the parents.
Estimates of VClones × Environments and Vɛ can be used to
determine the number of environments and replications per
environment needed to detect a given difference for a

quantitative trait as being statistically significant. Selection
indices can be constructed to include information on the
economic weights of different traits. However, these pie-
cemeal approaches do not consider the entirety of a plant
breeding program as a system of interdependent processes.
Plant breeders would benefit from the availability of tools to
design a plant breeding program as a whole.

Such tools will need to be borrowed from other fields.
Operations research involves the use of advanced analytics
to make better decisions and can be utilized to design
breeding processes such as trait introgression (Cameron
et al. 2017). Computer simulation has long been advocated
for manufacturing systems (Carrie 1988). Instead of calcu-
lating R for individual crosses via the breeder’s equation,
genetic gains for a breeding program as a whole can be
simulated vis-à-vis the costs and time required. Simulation
packages such as QU-GENE (Podlich and Cooper 1998),
AlphaSim (Faux et al. 2016), and DeltaGen (Jahufer and
Luo 2018) have been developed to model quantitative
variation and selection, and such software has been used to
compare breeding schemes (Wang et al. 2003; Jahufer and
Luo 2018). In the future, simulation tools need to be able to
incorporate existing germplasm, molecular marker data, and
phenotypic data as input variables. This means that in a
wheat breeding program, for example, the genetic entities in
a simulation process would not be generic individuals, but
instead would reflect the pedigrees of the actual wheat lines
used in the program, along with their associated SNP and
performance data for multiple traits.

The incorporation of simulation tools in plant breeding
would require changes in a typical plant breeding curricu-
lum, as well as increased collaborationsf with experts in
operations research, data science, and simulation of manu-
facturing systems. Commercial breeding organizations
would be apt to hire graduates with expertise in these areas.

BLUE: mixed-model analysis

Mixed-model analysis, which involves best linear unbiased
estimation (BLUE) of fixed effects and BLUP of random
effects (Henderson 1975, 1985), has proven to be an
effective framework for analyzing phenotypic and SNP data
routinely generated in a breeding program. Breeders of row
crops conduct balanced experiments by evaluating the same
set of candidates in each of several locations in one or more
years. However, the entirety of phenotypic data across
candidates, locations, and years are highly unbalanced.
Mixed-model analysis provides two key advantages: it
handles unbalanced data, and it can incorporate information
from relatives through one or more covariance matrices of
random genetic effects.

The linear model underlying mixed-model analysis can
be Eq. 1 or an extension thereof. For example, the linear
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model can be expanded to include fixed genetic effects due
to major QTL (Bernardo 2014b), subpopulations (Yu et al.
2006), transgenes, or different types of cytoplasm, or fixed
environmental effects such as level of nitrogen fertilizer or
the prior crop grown in the field. The random genetic effects
may correspond to lines, clones, or hybrids as in GBLUP, or
to SNP markers as in RR–BLUP. Linkage among markers
is reflected in the coefficient matrix in RR–BLUP, thereby
circumventing the need to assume linkage equilibrium.

The BLUP approach was first used in animal breeding
in 1970 to evaluate about 1200 Holstein dairy bulls in an
artificial insemination program (Freeman 1991). The use
of BLUP in plants started as a trickle, first via shrinkage
of estimates of combining ability toward the mean (Mel-
chinger et al. 1987) followed by utilization of information
from relatives to predict single-cross performance (Ber-
nardo 1994). It is encouraging that since the 2000s,
mixed-model analysis has become familiar to plant
breeding students and commonplace in plant breeding
programs.

The use of mixed-model analysis decreases the role of
genetics and increases the role of statistics in quantitative
genetics. This tendency was already observed in animal
breeding more than 30 years ago by the statistical geneticist
Oscar Kempthorne, who gave the following characteriza-
tion of animal breeding theory (Kempthorne 1988):

“With the idea that the genes of an individual are
random ones of a population of genes with indepen-
dence between loci, and the idea the environmental
effects can be regarded as realizations of independent
Gaussian random variables, we see that we have
reduced the whole theory to what we in statistics call
mixed linear model theory. The outcome is that what
is called the theory of animal breeding is reduced to
theory of a mixed linear model with fixed effects and
independent Gaussian random effects.

So genetics has disappeared from ideation, except that
use is made of coefficients of relationship or kinship
or “de parenté” (Malécot 1948) or of parentage
(Kempthorne 1957).”

The latter paragraph should be modified today because
mixed-model analysis now uses SNP marker data in
GBLUP rather than pedigree-based coefficients of coan-
cestry via traditional BLUP. The shrinkage factor (λ) used
in GBLUP, which is equivalent to (1− h2)/h2 in BLUP, can
be estimated by a grid search followed by cross-validation
to find the λ value that maximizes the predictive ability of
the model (de Vlaming and Groenen 2015). An estimate of
h2 is therefore not required and, in this context, identifying

the candidates with the best genotypic values becomes
purely a statistics problem. Overall, reinvention of quanti-
tative genetics as described in this Opinion article involves
approaches that are computational and empirical, rather than
being based on classical theory and assumptions. This trend
will undoubtedly continue as increasing amounts of phe-
notypic and SNP data and additional types of data (e.g.,
climate or cultural management practices) become available
to inform breeding decisions.
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