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ABSTRACT
Methods for predicting hybrid yield would facilitate the identifi-

cation of superior maize (Zea mays L.) single crosses. Best linear
unbiased prediction of the performance of single crosses, based on (i)
restriction fragment length polymorphism (RFLP) data on the paren-
tal inbreds and (ii) yield data on a related set of single crosses, was
evaluated. Yields of m single crosses were predicted as YM = C V 1
yp, where: yM = m × 1 vector of predicted yields of missing (i.e., no
yield data available) single crosses; C = m × n matrix of genetic
covariances between the missing and predictor hybrids; V = n × n
matrix of phenotypic variances and covariances among predictor hy-
brids; and yp ---- n x 1 vector of predictor hybrid yields corrected for
trial effects. From a set of 54 single crosses, made between six Iowa
Stiff Stalk Synthetic (SSS) and nine non-SSS inbreds, 100 different
sets of n = 10, 15, 20, 25, or 30 predictor hybrids were chosen at
random. Pooled correlations between predicted and observed yields
of the remaining (54 - n) hybrids ranged from 0.654 to 0.800. The
correlations were slightly higher when dominance variance was in-
cluded in the model or when coefficients of coancestry were deter°
mined from RFLP rather than pedigree data. The correlations remained
relatively stable across different, arbitrary values of genetic variances.
The results suggested that single-cross yield can be predicted effec-
tively based on parental RFLP data and yields of a related set of
hybrids.

I N COMMERCIAL MAIZE BREEDING PROGRAMS, the
identification of pairs of inbreds with superior yield

performance in single-cross combination is costly and
time consuming. Because of strong dominance effects
for maize grain yield (Hallauer and Miranda, 1981), hy-
brid performance cannot be predicted from inbred per se
data (Smith, 1986). Thus, it is necessary to cross the
inbreds and evaluate the hybrids themselves in extensive
yield trials.

Commercial maize hybrids are typically made be-
tween inbreds from opposite, complementary heterotic
groups. Unfortunately, maize breeders are unable to
evaluate all possible single-cross combinations between
inbreds from different heterotic groups because the num-
ber of possible hybrids is often prohibitive. To illustrate,
there are 100 possible single crosses between 10 inbreds
from Heterotic Group X and 10 inbreds from Heterotic
Group Y. But if the breeder has 50 inbreds from X and
50 inbreds from Y, the number of possible single crosses
increases to 2500. Whereas the breeder may be able to
adequately test 100 hybrids in yield trials, evaluating
2500 hybrids would be much more costly.

The use of inbred per se molecular marker data has
been suggested as a means to (i) determine the heterotic
grouping and degree of genetic relationship among inbreds
and (ii) predict hybrid performance based on molecular
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marker dissimilarity between parents. Restriction frag-
ment length polymorphisms have been found useful for
assigning inbreds to heterotic groups as well as for de-
termining relationships among inbreds in the same het-
erotic group (Smith et al., 1990; Melchinger et al., 1991;
Dudley et al., 1991; Hogan and Dudley, 1992; Ber-
nardo, 1993). But in theoretical (Bernardo, 1992; Char-
cosset et al., 1991) as well as empirical studies using
RFLPs (Godshalk et al., 1990; Melchinger et al., 1990;
Dudley et al., 1991), the correlations between single-
cross yield and molecular marker dissimilarity between
parents have been too low to be of any predictive value.

Although yield data may not be available for all pos-
sible single-cross combinations among available inbreds,
some of these combinations already may have been eval-
uated by the breeder. For example, yield data may be
available for 200 out of 2500 possible hybrids between
50 inbreds from X and 50 inbreds from Y. If information
on the RFLP or pedigree relationships among the 100
parental inbreds is available, by best linear unbiased pre-
diction (BLUP) (Henderson, 1975; 1985) the yield 
on the 200 tested hybrids may be used to predict the
yields of the remaining 2300 untested hybrids. The BLUP
procedure, usually assuming an additive and intrapop-
ulation genetic model, have been used extensively in dairy
cattle (Bos taurus) evaluation (Henderson, 1988). How-
ever, the application of BLUP in crop plants has been
very limited (White and Hodge, 1989).

The objectives of this paper are (i) to illustrate and
evaluate the usefulness of BLUP for predicting single-
cross performance using RFLPs and information from
related hybrids, and (ii) to test the robustness of the method
with regards to genetic model and measure of genetic
relationship.

THEORY

Genetic Covariance Between Single Crosses

Assume x and x’ are inbreds from Heterotic Group X, whereas
y and y’ are inbreds from Heterotic Group Y. Inbreds from X
and Y are unrelated. The genetic value (expressed as a devia-
tion from the population mean) of hybrid (x.y) at the kth locus
is:

where: aXvk = testcross additive effect of Allele i:~ (received
Yfrom Heterotic Group X through Inbred x) at Locus k; tZj/k 

testcross additive effect of Allele j[ (received from Heterotic
Group Y through Inbred y) at Locus k; and &Ti/kjV/k = domi-
nance effect of allelic pair i~j’~ at Locus k.

Assuming negligible epistasis, no linkage, and gametic equi-

Abbreviations: RFLPs, restriction fragment length polymor-
phisms; BLUP, best linear unbiased prediction; REML, restricted
maximum likelihood; GCA, general combining ability; SCA, spe-
cific combining ability; SSS, Iowa Stiff Stalk Synthetic; NSSS,
non-Iowa Stiff Stalk Synthetic
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librium in X and Y, Meichinger’s (1988) expression for the
genetic covariance between hybrids (x.y) and (x’.y’) reduces
to:

Cov[(x-y),

= E[fx~, E p~ (~i~) ~ + fyy, E p~ (o~)2 + fx~’fyy’
X Y XY 2

= f,,x’ VA(x/Y) + fyy’ V~,(¥/x) f, =fyy" VD(xv) [1

where fxx, = coefficient of coancestry between Inbreds x and
x’; fyy, = coefficient of coancestry between Inbreds y and y’;
Pizk -- frequency of Allele tXk in Heterotic Group X;PjZkV _-
frequency of Allele j’~ in Heterotic Group Y; VA(X/y) = pooled
(across k loci) testcross additive variance of Allele iXk; VAC~

¯ " " Ce of AII~/~- pooled (across k loci) testcross addtttve vanan
jVk; and Vomv) = pooled (across k loci) dominance variance
of allelic pair i~jVk.~

The coefficients of coancestry (f,,,,. and f, .) can be deter-
mined from pedigree records (Falconer, 19i~’]~) or from RFLP
data as follows (Bemardo, 1993):

fRxx. = [Sxx’ - 1/2(Sxy + Sx’y)] 
[1 - 1/2(Sxy + Sx’y)] [2]

where~x’ = RFLP-based estimate of coefficient of coancestry
between x and x’; Sxx’ = proportion of RFLP variants com-
mon to x and x’; and Sxy (or Sx’y) = average proportion 
RFLP variants common to x (or x’) and a series of inbreds
from Heterotic Group Y.

Estimation of Genetic Variances
Traditional mating designs for estimating genetic variances,

such as the Design II mating scheme, are applicable if the
parental inbreds are unrelated. Because the parental inbreds
used in predicting single-cross performance are related, such
mating designs cannot be used. In contrast, restricted maxi-
mum likelihood (REML) (Harville, 1977; Henderson, 1985)
procedures for estimating genetic variances account for rela-
tionships among inbreds. Assume that n single crosses are
made between nx inbreds from Heterotic Group X and nv
inbreds from Heterotic Group Y. The single crosses are eval-
uated in t different yield trials resulting inp total observations.
If all possible single crosses between heterotic groups are eval-
uated, n = nxnv, and if all single crosses are evaluated in
each yield trial, p = nt. The linear model is:

y = X/3 + Zia x + Zzav + Zd + e

where y = p × 1 vector of observed yields; fl = t × i vector
of trim effects; ax = nx × 1 vector of general combining
ability (GCA) effects of inbreds in Heterotic Group X; v =
nv × 1 vector of GCA effects of inbreds in Heterotic Group
Y; d = n × 1 vector of specific combining ability (SCA)
effects; e = vector of residuals; and X, Z~, Zz, and Z are
incidence matrices of ls and 0s relating y to/~, ax, av, and
d, respectively.

Decomposition of Eq. [1] leads to the covariances between
GCA and between SCA effects. The covariance matrix of ax
is At V,,,~x~). The diagonal elements of A~ are equal to 1 and
the off-diagonal elements are equal to fx~, between the corre-
sponding inbreds. Similarly, the covariance matrix of av is

~ Using the notation of Hallauer and Miranda (1981) for a sin-
gle-locus, two-allele model:

Cov [(x.y),(x’.y’)]
= f,,,,.p(l --p)[a + a(1 -- 2r)] 2 + fyy.r(1 -- r)[a a(1 -

2p)l~ + f~.,f.,4p(1 - p)r(1 r) 2
where: p and r are the frequencies of the + allele in X and Y,

respectively; a is half the difference between genetic values of the
homozygotes; and d is the value of the heterozygote.

A, V~qv/x). The diagonal elements of Az are equal to 1 and
the off-diagonal elements are equal to fyy,. The covariance ma-
trix of d is DVotxv~, with the diagonal elements of D equal to
1 and the off-diagonal elements equal to f~fry’.

Suppose n = 5 hybrids between nx = 2 inbreds from X
andnv = 3 inbreds fromY are evaluated in t = 2 sets of
yield trials:

Trial
1
1
1
1
2
2

Hybrid
Inbred X1 Inbred Y1
Inbred X1 Inbred Y2
Inbred X1 Inbred Y3
Inbred X2 Inbred Y3
Inbred X1 Inbred Y1
Inbred X2 Inbred Y2

Yield
10
15
12
20
15
20

The system of equations is:

y = X fi + Z~ ax + Z2 av + Z d

15 1 0l _fl2.J 1 01 _~x~_! 0 1 0t a.¢~ I 0 1 0 0 d2

12 1 01 1 01 l0 0 1l 0 0 1 0
20 1 0l 0 11 ,001l 000 101 d4

15 0 11 1 01 1 0 01 1 0 0 00],.d~_

I~ 9 1~ 9 1~ ~ 1 0~ ~000

Assuming nongenetic effects are uncorrelated,
and d can be calculated from the following set of equations:

x,z
~X ZIZ~ + Aft~ ~ Z/Zz Z~’Z IZ~

I +
_ ~’X Z’Z~ Z’Z~ Z’Z+ D-~ ~3 I~’~

~ C20 C21 C22 C23C30 C3~ C32 C33 ~ ’.’y

where V~ = nongenetic variance; ~
V.(wx); and ~ =

REML estimates of nongenetic and genetic variances can be
obtained by iterating on (Henderson, 1985):

Vz = [y’y - (solution vector)’(right-hand side vector)]/~ -
t);

V~(~) = (ax’ ~ ax+ VE tr A(~C.)/ nx;
V,~wx) = (a~’ A¢~ a, + V~ tr A;~ C~)/nv; and
Vo~x~) = (d’ ~-~ d + VE tr D-’ %~)/n

where tr = trace operator, i.e., sum of the diagonal elements
of a matr~.

Best Linear Unbiased Prediction of Single-
Cross Performance

The yield performance of a set of rn missing single crosses
can be predicted based on yields of a set of n predictor hybrids.
Let yp be a n × i vector of average yields of predictor hybrids,
corrected for yield trial effects (/3is):

yp = (Z’Z)-’ Z’(y -- X [3]
where Z, y, X, and /~ are defined in the preceding section.
Yields of the missing single crosses can be predicted as:

YM = C V-1 yp [4]
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where: yM = rn x 1 vector of predicted yields of missing
single crosses; C = m x n matrix of genetic covariances
between the ith missing single cross and jth predictor hybrid;
and V = n × n phenotypic variance-covariance matrix among
the predictor hybrids. Assuming nongenetic effects are uncor-
related, the elements of C as well as the off-diagonal elements
of V are calculated using Eq. [1]. The ith diagonal element of
V is equal to VA<x.,v) + VAO,-~X) + VD(XY) ~- VE/ (number of
observations for the ith predictor hybrid).

MATERIALS AND METHODS

Data Set

Fifty-four maize single crosses were obtained by crossing
six inbreds related to Iowa Stiff Stalk Synthetic (SSS) to nine

inbreds unrelated to SSS (designated NSSS, and predominantly
Lancaster Surecrop). The 54 hybrids along with two checks
were evaluated in 1992 at Kirkland and Somonauk, IL, and
Clarence and Manchester, IA, using a 7 × 8 rectangular lattice
design with two replicates. The trial at Somonauk was dis-
carded because of poor seedling emergence. The hybrids were
grown in two-row plots, each row 5 m long and spaced 0.76
m apart, at a plant population density of 73 700 plants ha-1.
The plots were machine-harvested and grain yields (t ha-1 at
155 g H20 kg-1) were recorded. Lattice analyses of variance
were performed on yield data from each location. Adjusted
entry means and average effective error variances were used
in a combined analysis of variance across locations.

Coefficients of coancestry among the six SSS and nine NSSS
were determined from pedigree records and from RFLP data
(Eq. [2]). When pedigree relationships between ancestors 
two inbreds were unknown, the coefficient of coancestry be-
tween the ancestral inbreds was assumed zero. Patterns of hy-
bridization fragments (bands) were determined using 110 well-
dispersed probes and restriction digests of genomic DNA from
each of the 15 parental inbreds. The restriction enzymes EcoRI
and HindlII were used in combination with each probe. Each
of the 220 probe-enzyme combinations was considered an RFLP
locus, and each unique banding pattern an RFLP variant. DNA
extraction, restriction enzyme digestion, gel electrophoresis,
Southern blotting, and probe hybridization were done as de-
scribed by Murigneux et al. (1993). Equation [2] may give
negative estimates of coefficients of coancestry due to sam-
pling error (Bernardo, 1993). Because coefficients of coan-
cestry are nonnegative by definition, negative estimates were
set equal to zero. Confidence intervals (a = 0.05) on RFLP-
based estimates of coefficients of coancestry were obtained as
the variance of a ratio (Kempthome, 1969) assuming that the
proportions of shared RFLP variants followed normal approx-
imations of a binomial distribution (Steel and Torrie, 1980).

Restriction fragment length polymorphism- and pedigree-
based coefficients of coancestry were used to construct two
sets ofA~, A2, and D matrices. Correspondingly, two different
sets of REML estimates of ~, VA(X/y) , VA(Y/X) , VD(XY), and VE

Table 1. Average yields of maize single crosses between Iowa
Stiff Stalk Synthetic (SSS) inbreds and non-SSS (NSSS) inbreds
evaluated at three locations in 1992.

Inbreds SSS1 SSS2 SSS3 SSS4 SSS5 SSS6

t ha-~

NSSSI 10.82 12.45 10.97 10.94 9.98 11.73
NSSS2 11.66 11.02 10.14 10.05 10.02 12.31
NSSS3 11.32 10.68 11.99 11.65 10.04 12.10
NSSS4 12.30 12.54 12.50 11.68 10.28 13.04
NSSS5 12.79 12.81 11.82 12.06 10.50 13.00
NSSS6 11.49 11.84 11.54 11.74 10.30 12.48
NSSS7 11.45 11.23 10.98 10.89 9.81 12.41
NSSS8 10.73 11.00 10.96 11.49 9.94 11.67
NSSS9 9.61 11.08 10.60 10.72 9.97 11.09

LSD (et = 0.05) 1.21

were obtained. A computer program for estimating genetic
variances by REML was written in QBasic and run on a PC-
compatible 386 microcomputer. Tolerances equal to 0.0001
were specified during iteration.

Method Validation

Sets of n = 10, 15, 20, 25, and 30 predictor hybrids were
selectedat random from the 54 hybrids. Yields of each set of
n predictor hybrids were obtained according to Eq. [3] and
using trial effects (fl) estimated from the analysis of all 
single crosses. Based on the yields of the n predictor hybrids,
yields of the remaining (54 - n) hybrids were predicted using
Eq. [4]. Simple correlations between the predicted and ob-
served yields of the (54 - n) missing single crosses were
calculated. For each value of n, the sampling process was
repeated for a total of 100 different sets of n predictor and (54
- n) missing hybrids. Across the 100 repetitions, pooled cor-
relation coefficients were calculated for each value of n, and
95% confidence intervals were obtained if the correlation coef-
ficients were found homogeneous (Steel and Torrie, 1980).

Two genetic models were used: (i) full model and (ii) 
model, wherein dominance variance [VD(x~)] was excluded from
Eq. [1]. For each genetic model, prediction of single-cross
performance was done using coefficients of coancestry deter-
mined from (i) RFLP data and (ii) pedigree records.

RESULTS AND DISCUSSION

Means, Genetic Variances, and Relationships
among Parental Inbreds

Single-cross yields, averaged across three locations,
ranged from 9.61 t ha-1 for SSS1 × NSSS9 to 13.04 t
ha-1 for SSS6 × NSSS4 (Table 1). The estimate 
average performance of the single crosses was 11.07 t
ha-1 when RFLP-based coefficients of coancestry were
used in BLUP, and 11.03 t ha-1 when pedigree rela-
tionships were used in BLUP. Nongenetic and genetic
variances as well as entry-mean heritability, estimated
using RFLP and pedigree (in parentheses) relationships
in BLUP, were VE = 0.5537 (0.5520); VAeX/V) = 0.5409
(0.8186); VAO’/X_) = 0.1783 (0.2033); Vt)tx¥) = 
(0.0769); and ~ =0. 812 (0 .857).

Restriction fragment length polymorphism-based es-
timates of coefficients of coancestry among SSS inbreds
(,fix,,,) ranged from 0.05 for (SSS2, SSS5) to 0.65 for three
different pairs of SSS inbreds (Table 2). Pedigree-based
coefficients of coancestry among SSS inbreds (fx,,,) ranged
from 0.04 for three different pairs of inbreds to 0.77 for
(SSS1, SSS6) (Table 2). Among the 15 pairwise 
binations of SSS inbreds, the average .ff, x was 0.35 and
the average f,x was 0.33. The two estimates of relation-
ship among SSS inbreds were highly correlated (r 
0.92", a = 0.05). The .t~x , was significantly different

Table 2. Coefficients of coancestry based on 220 RFLPs (above
¯ diagonal) and pedigree (below diagonal) among Iowa Stiff
Stalk Synthetic (SSS) maize inbreds.

Inbreds SSS1 SSS2 SSS3 SSS4 SSS5 SSS6

SSS1 1 0.65 0.65* 0.15 0.14 0.65
SSS2 0.61 1 0.47 0.12 0.05 0.63*
SSS3 0.40 0.39 1 0.22 0.26 0.57
SSS4 0.04 0.04 0.19 1 0.48* 0.12
SSS5 0.06 0.05 0.28 0.69 1 0.06
SSS6 0.77 0.76 0.52 0.04 0.06 1

* Significantly different (~t = 0.05) from corresponding pedigree-based
estimate.
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Table 3. Coefficients of coancestry based on 220 RFLPs~- (above diagonal) and pedigree (below diagonal) among maize inbreds
unrelated to Iowa Stiff Stalk Synthetic (NSSS).

Inbreds NSSS1 NSSS2 NSSS3 NSSS4 NSSS5 NSSS6 NSSS7 NSSS8 NSSS9

NSSS1 1 0o69 0.34 0.11 0.07 0 0.07 0.08 0.02
NSSS2 0.73 1 0.25 0.06 0.03 0 0.03 0.03 0
NSSS3 0.38 0.36 1 0.05 0 0 0.09 0.01 0.06
NSSS4 0 0 0 1 0.77 0.45 0.06 0 0.18
NSSS5 0 0 0 0.88 1 0.42 0.02 0 0.14
NSSS6 0 0 0 0.44 0.50 1 0.03 0 0.05
NSSS7 0 0 0 0 0 0 1 0.03 0.05
NSSS8 0 0 0 0 0 0 0 1
NSSS9 0 0 0 0.22 0.25 0.13 0 0 1

Negative estimates were set equal to zero. None of the RFLP-based estimates was significantly different (¢t = 0.05) from the corresponding
pedigree-based estimates.

from fxx, for the (SSS1, SSS3), (SSS2, SSS6), and (SSS4,
SSS5) pairwise combinations.

Among NSSS inbreds, coefficients of coancestry based
on RFLPs ~ ,) and based on pedigree (fyy,) were zero
for several parrs of lnbreds (Table 3). The inbred pair
(NSSS4, NSSS5) had the highest values of both ~, (0.77)
andfyy, (0.88). The average~, was 0.12 and the average
f,., was 0.11. The two estimates of relationship among
~SSS inbreds were highly correlated (r = 0.98", c~ 
0.05). None of the pairwise combinations of NSSS inbreds
had significantly different estimates of~, and fyy,.

Correlations Between Predicted and Observed
Single-Cross Yield

Among the different combinations of (i) number 
predictor hybrids, (ii) genetic model, and (iii) estimate
of genetic relationship, the pooled (across 100 repeti-
tions) correlation between predicted and observed single-
cross yields ranged from 0.654 to 0.800 (Table 4). These
high correlations indicate that single-cross performance
can be predicted effectively using information from re-
lated hybrids, especially when one considers that the the-
oretical maximum value of these correlations was < 1.
The predicted genetic values were not compared to known
genetic Values, but to observed phenotypic values of the
single crosses. The correlation between genetic and phe-
notypic value is the square root of heritability (h2). Be-
cause h2 was 0.812 using RFLP relationships and 0.857
using pedigrees, the theoretical maximum values of the
correlation between predicted and. observed single-cross
yields were (0.812)0.5 = 0.901 and (0.857)0.5 = 0.926.
However, the correlations between predicted and ob-
served yields were obtained from a relatively small data
set, and extrapolation of the results to different and larger
data sets must be done with caution.

Correlations between predicted and observed single-
cross yields increased as the number of predictor hybrids
(n) increased. The largest increments in the correlations
occurred when n increased from 10 to 15, but the cor-
relations did not increase substantially beyond n = 25.
However, conclusions regarding the optimum number of
predictor hybrids are difficult to make. The optimum
number of predictor hybrids is likely to vary among data
sets, and larger numbers of predictor hybrids may be
needed as the diversity among inbreds in each heterotic
group increases.

The correlations between predicted and observed sin-
gle-cross yields were consistently greater for the full model
than for the GCA (dominance variance excluded) model

(Table 4). The correlations ranged from 0.661 to 0.800
for the full model and from 0.654 to 0.793 for the GCA
model. Based on empirical data, dominance variance
[VDtxV~] constitutes approximately 40% of the total ge-
netic variance for maize grain yield (Hallauer and Mi-
randa, 1981). Hence, correlations between predicted and
observed single-cross yields were expected to be greater
for the full model than for the GCA model. However,
the differences in the correlations using the two models
were very small. This result may be specific to the data
set used in this study. The covariance between hybrids
(x y) and (x’ y’) includes Vt) xY) only when the coeffi-
oents of coancestry between x and x’ and between y and
y’ are both >0 (Eq. [1]). In many instances, particularly
for the NSSS inbreds, coefficients of coancestry were
near-zero or equal to zero (Table 3). Thus, the contri-
bution of VD~XV) in the full model was small for many
of the pairs of single crosses in this study. Also, the
estimate of VD~XY) was small compared to VA~X~) and
VAry/x). Consequently, attempts to predict SCA between
pairs of inbreds were not successful (results not shown),
with r _< 0.15 between predicted and observed SCA.
The advantage of the full model over the GCA model in
predicting single-cross yield is expected to increase as
the degree of relationship among inbreds within heterotic
groups increases.

Although the two estimates of genetic relationship were
highly correlated, RFLP-based coefficients of coancestry
ff R) gave consistently better predictions of single-cross
yield than pedigree-based coefficients of coancestry ~.

Table 4. Pooled (across 100 repetitions) correlations between
predicted and observed maize single-cross yields for different
combinations of number of predictor hybrids, genetic model,
and estimate of coefficient of coancestry.

Genetic relationship
Number of based on:
predictor

Model hybrids RFLPs Pedigree

Full

GCA

10 0.695 0.661
15 0.740~ 0.718~
20 0.770~ 0.755~
25 0.795~ 0.786~
30 0.800t 0.793~

10 0.688t 0.654
15 0.733~ 0.712~
20 0.764~ 0.749¢
25 0.788~ 0.779¢
30 0.793~ 0.786~

Sample correlations were homogeneous at a = 0.05. Approximate
confidence intervals on the pooled correlation coefficients were
(r _+ 0.015).
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Table 5. Pooled (across 100 repetitions) correlations between predicted and observed maize single-cross yield using arbitrary
estimates of genetic variances, full model, and RFLP-based estimates of coefficient of coancestry.

Number of predictor hybrids

VA(Y/X): VA(x/y): VD(XY) 10 15 20 25 30

REML (= 15:5:2) 0.695 0.740~ 0.770:~ 0.795~ 0.800~
1:1:1 0.661 0.727:~ 0.761 ~ 0.772~ 0.789~
1:1:2 0.646 0.715~: 0.754:~ 0.765~ 0.778:~
1:2:1 0.660:[: 0.703~ 0.747~ 0.772~: 0.785~
1:2:2 0.634 0.700~ 0.744~ 0.766~ 0.781~
2:1:1 0.712 0.760~ 0.776~ 0.793~ 0.789~
2:1:2 0.694 0.749:~ 0.774~: 0.784:~ 0.803~:
2:2:1 0.681 0.732~: 0.771~ 0.786~: 0.804~

V^tx~o = testcross additive variance among SSS lines when crossed to NSSS lines; VAtWX) = testcross additive variance among NSSS lines when
crossed to SSS lines; and Vr~txv) = dominance variance in the SSS x NSSS cross population.
Sample correlations were homogeneous at a = 0.05. Approximate confidence intervals on the pooled correlation coefficients were (r - 0.015).

Correlations between predicted and observed single-cross
yield ranged from 0.688 to 0.800 using f R and from
0.654 to 0.793 using f. The f R values may be more
accurate estimators of relationship than f if (i) effects 
selection and/or genetic drift were present during inbred
development, (ii) inbreds were developed using recurrent
selection, or (iii) pedigree information was unavailable
or unreliable (Bernardo, 1993). The calculation off as-
sumes no selection during inbred development. How-
ever, intense selection for yield and other agronomic
characteristics is practiced during inbred development
(Hallauer, 1990) such that unequal parental contributions
to the inbred progeny may occur. No assumption re-
garding RFLP-quantitative trait loci (QTL) linkage was
made in this study. But if some of the RFLPs were linked
to QTL, then f R would, to some extent, have accounted
for deviations from f due to selection. Even when the
RFLPs are unlinked to QTL, f R may provide estimates
of genetic relationship among inbreds derived from re-
current selection or among inbreds with unknown or un-
reliable pedigrees. For inbreds licensed from foundation
seed companies or selfed from commercial hybrids, in-
complete or unknown pedigrees are not uncommon. In
this study, all 15 parental inbreds were developed using
selection during inbreeding. Also, SSS6 was developed
using recurrent selection whereas pedigree relationships
between some ancestral inbreds of NSSS3, NSSS7, and
NSSS8 were unknown and assumed zero. The consis-
tently higher correlations between predicted and ob-
served yields usingf R ratherf suggests thatf R may have
provided better estimates of the true degree of relation-
ship, i.e., probability that inbreds share alleles that are
identical by descent. Nevertheless, the magnitude of the
correlations between predicted and observed yields ob-
tained using f indicates that pedigree-based coefficients
of coancestry may be used to predict single-cross yields
when RFLP data are unavailable.

One of the drawbacks of BLUP methodology has been
the need for precise estimates of genetic variances (White
and Hodge, 1989). But the correlations between pre-
dicted and observed yields remained relatively stable across
different, arbitrary proportions of genetic variances (Ta-
ble 5). Some of the correlations obtained using arbitrary
proportions of VA(X/y) , VA(Y/X) , and VD(XY ) were higher
than those obtained using REML estimates of genetic
variances. These results indicate that, at least for the data
set used in this study, precise estimates of genetic vari-
ances are not necessary for effective prediction of single-
cross performance and approximations of these variances
may be sufficient.

Bias in the expression for covariance between single
crosses is caused by gametic disequilibrium in the pa-
rental populations, epistasis, or both (Melchinger, 1988).
The simplifying assumptions of gametic equilibrium in
the parental populations hnd negligible epistasis may not
be valid in actual breeding populations. Also, BLUP
methodology requires the assumption that inbreds are
random members of the parental populations, whereas
the inbreds used in this study were highly selected lines.
But the magnitudes of the correlations between predicted
and observed single-cross yield, as well as their robust-
ness with regards to genetic variances, suggest that the
simplified model assuming gametic equilibrium and neg-
ligible epistasis is sufficient for the prediction of single-
cross performance.

Application in Breeding Programs

The BLUP approach used in this study requires infor-
mation on (i) the relationships among inbreds within each
heterotic group and (ii) yield performance of a related
set of single crosses. The method has potential applica-
tion in commercial maize breeding programs because (i)
in the future, new inbreds likely will be routinely fin-
gerprinted for RFLPs, at least for plant protection pur-
poses; and (ii) inbreds are invariably tested for yield
performance in hybrid combination at some stage during
the breeding process. If RFLP data are not available,
relationships among inbreds can be determined from pe-
digree records.

Single crosses are often evaluated in different sets of
yield trials, locations, or years. The BLUP method per-
mits the analysis of such unbalanced data. But instead
of utilizing all available data (most likely unbalanced)
from different yield trials to estimate yields of predictor
hybrids, an alternative approach is to select a reference
set of inbreds from each heterotic group (e.g., X and
Y). The reference inbreds from X may be crossed to the
reference inbreds from Y, and the resulting single crosses
may be evaluated in the same yield trials at several lo-
cations for several years. Single-cross yields and genetic
variances can be estimated from this balanced data set.
This reference population of predictor hybrids may then
be used to predict the performance of future single crosses
between inbreds from X and Y.

The results in this study were based on a relatively
small data set of 54 single crosses. Further research with
larger data sets is needed to assess the utility of BLUP
for predicting single-cross yield. Research is currently
being conducted on (i) the prediction of single cross yield



BERNARDO: PREDICTION OF SINGLE-CROSS PERFORMANCE 25

using a larger set of single crosses evaluated in different
locations and years and (ii) using independent sets of
predictor and missing hybrids. Nevertheless, the high
correlations between predicted and observed yields ob-
tained in this study suggest that BLUP may be useful for
identifying superior single-cross combinations.
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