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RESEARCH

Marker-assisted selection for quantitative traits has tra-
ditionally relied on fi rst identifying markers linked to 

quantitative trait loci (QTL). A specifi c form of marker-assisted 
selection in maize (Zea mays L.) is marker-assisted recurrent selec-
tion (MARS) in which (i) one generation of phenotypic selec-
tion in the target environment is conducted, (ii) markers with 
signifi cant eff ects are used to predict the performance of individ-
ual plants, and (iii) several generations of marker-only selection 
are performed in a year-round nursery or greenhouse. Empiri-
cal results from private breeding programs have shown MARS 
to be eff ective at improving quantitative traits in maize, soy-
bean [Glycine max (L.) Merr.], and sunfl ower (Helianthus annuus 
L.) ( Johnson, 2004; Eathington et al., 2007). Specifi cally, gains 
from selection in 248 maize breeding populations were more than 
twice as large with MARS than with standard phenotypic selec-
tion methods (Eathington et al., 2007).

In contrast to previous MARS or other QTL-based selection 
strategies, genomewide selection (GWS, also called genomic selec-
tion; Meuwissen et al., 2001) does not involve tests of signifi cance 
and uses all available markers to predict performance. Simulation 
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ABSTRACT

Genomewide selection (GWS) is marker-

assisted selection without identifying markers 

with signifi cant effects. Our previous work with 

the intermated B73 × Mo17 maize (Zea mays 

L.) population revealed signifi cant variation for 

grain yield and stover-quality traits important 

for cellulosic ethanol production. Our objec-

tives were to determine (i) if realized gains from 

selection are larger with GWS than with marker-

assisted recurrent selection (MARS), which 

involves selection for markers with signifi cant 

effects; and (ii) how multiple traits respond to 

multiple cycles of GWS and MARS. In 2007, 

testcrosses of 223 recombinant inbreds devel-

oped from B73 × Mo17 (Cycle 0) were evaluated 

at four Minnesota locations and genotyped with 

287 single nucleotide polymorphism markers. 

Individuals with the best performance for a Sto-

ver Index and a Yield + Stover Index were inter-

mated to form Cycle 1. Both GWS and MARS 

were then conducted until Cycle 3. Multilocation 

trials in 2010 indicated that gains for the Sto-

ver Index and Yield + Stover Index were 14 to 

50% larger (signifi cant at P = 0.05) with GWS 

than with MARS. Gains in individual traits were 

mostly nonsignifi cant. Inbreeding coeffi cients 

ranged from 0.28 to 0.38 by Cycle 3 of GWS 

and MARS. For stover-quality traits, correlations 

between wet chemistry and near-infrared refl ec-

tance spectroscopy predictions decreased after 

selection. We believe this is the fi rst published 

report of a GWS experiment in crops, and our 

results indicate that using all available markers 

for predicting genotypic value leads to greater 

gain than using a subset of markers with signifi -

cant effects.
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and empirical cross-validation studies in plants have shown 
GWS to be more eff ective than strategies that use only a 
subset of markers with signifi cant eff ects. In simulation stud-
ies for maize and oil palm (Elaeis guineensis Jacq.), responses 
to selection were 18 to 175% larger with GWS than with 
MARS across diff erent numbers of QTL and levels of herita-
bility (Bernardo and Yu, 2007; Wong and Bernardo, 2008). 
In empirical cross-validation studies in maize (Lorenzana 
and Bernardo, 2009; Guo et al., 2012), barley (Hordeum vul-
gare L.; Lorenzana and Bernardo, 2009), oat (Avena sativa 
L.; Asoro et al., 2011), and wheat (Triticum aestivum L.; Hef-
fner et al., 2011), GWS predictions of observed performance 
were consistently more accurate than multiple-regression 
predictions based on signifi cant markers only.

While these results from simulation and cross-validation 
studies are promising, we are unaware of published reports 
comparing the eff ectiveness of GWS and MARS in an actual 
selection experiment in which the best plants are selected via 
GWS and MARS, the selected plants are recombined to 
form the next cycle, several cycles of selection are conducted, 
and the observed responses to selection are evaluated in fi eld 
experiments. In previous experiments with the intermated 
B73 × Mo17 population (Lee et al., 2002) at the University 
of Minnesota and USDA-ARS, we investigated the pros-
pects of breeding maize for both grain yield and stover-qual-
ity traits for cellulosic ethanol (Lewis et al., 2010; Lorenzana 
et al., 2010). In particular, we focused on three stover-quality 
traits important for cellulosic ethanol: concentration of cell 
wall glucose in dry stover (referred to as “Glucose”); cell wall 
glucose released from the stover by thermochemical pretreat-
ment and enzymatic saccharifi cation (“Glucose Release”); 
and concentration of lignin as a proportion of the cell wall 
(“Lignin”). We found signifi cant genetic variation and favor-
able or neutral genetic correlations for these traits in test-
crosses of the intermated B73 × Mo17 population (Lewis et 
al., 2010). While we detected 7 QTL for Glucose, 10 QTL 
for Glucose Release, 8 QTL for Lignin, and a total of 127 
QTL for other stover-quality traits we studied, none of the 
QTL had a major eff ect (r2 ≤ 12%; Lorenzana et al., 2010).

We have since built on this previous research (Lewis 
et al., 2010; Lorenzana et al., 2010) by conducting multiple 
cycles of GWS and MARS for grain yield, agronomic traits, 
and stover-quality traits in the same B73 × Mo17 popula-
tion, and we report our results herein. Our objectives in this 
study were to determine (i) if realized gains from selection 
in maize were larger with GWS than with MARS; and (ii) 
how multiple traits related to grain yield and stover quality 
respond to multiple cycles of GWS and MARS.

MATERIALS AND METHODS
Overview
In this study, GWS and MARS for maize grain yield, agro-

nomic traits, and stover quality comprised the following steps 

(Fig. 1): (i) an initial population (Cycle 0) was evaluated for 

molecular markers and trait phenotypes; (ii) multitrait selection 

indices were constructed to combine phenotypic data for dif-

ferent traits; (iii) Cycle 0 individuals were ranked according to 

their selection-index values (i.e., phenotypic selection) and the 

best individuals were selected and intermated to form Cycle 1; 

(iv) Cycle 1 individuals were genotyped for molecular markers; 

(v) for GWS and MARS and for each selection index, Cycle 1 

individuals were ranked according to their marker-predicted 

values for the selection index, and the best Cycle 1 individuals 

were selected and intermated to form Cycle 2; (vi) procedures 

used in Cycle 1 were repeated in Cycle 2 to produce Cycle 3; 

and (vii) performances of Cycle 0, 1, 2, and 3 populations were 

compared in fi eld trials to evaluate the progress from selection.

Phenotyping of Cycle 0 Population
The intermated B73 × Mo17 population (Lee et al., 2002) 

served as Cycle 0. Procedures and results of phenotypic analysis 

of Cycle 0 were reported by Lewis et al. (2010) and are sum-

marized here. A total of 223 randomly chosen B73 × Mo17 

recombinant inbreds were testcrossed to an elite Monsanto 

(St. Louis, MO) inbred. The Cycle 0 testcrosses were evalu-

ated at two locations at the University of Minnesota Southern 

Research and Outreach Center at Waseca and at two locations at 

the University of Minnesota Southwestern Research and Out-

reach Center at Lamberton, for a total of four locations. The 

two locations within each Research and Outreach Center were 

planted 5 to 7 d apart and diff ered in soil type (Webster and 

Figure 1. Genomewide selection and marker-assisted recurrent 

selection (MARS) in the intermated B73 × Mo17 maize recombi-

nant inbreds.
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was crossed with a balanced bulk of the other nine half-sib bulks 

in a paired-row crossing system. Equal amounts of seeds from 

each paired row were then bulked to form a segregating popula-

tion that served as Cycle 1.

Models for Genomewide Selection 
and Marker-assisted Recurrent Selection
The 223 recombinant inbreds were genotyped by DNA Land-

Marks (Saint-Jean-sur-Richelieu, QC) for 287 polymorphic, 

well-spaced single nucleotide polymorphism (SNP) markers. 

Marker eff ects in GWS were calculated by ridge regression–best 

linear unbiased prediction (RR-BLUP; Meuwissen et al., 2001). 

Specifi cally, all 287 markers were used to model the mean (across 

locations) index values of testcrosses as y = μ1 + Xg + e (Meu-

wissen et al., 2001), where y was a 223 × 1 vector of index values 

(Stover Index or Yield + Stover Index) of the 223 testcrosses in 

Cycle 0; μ was the overall mean of the index used; 1 was a 223 × 

1 vector with all elements equal to 1; X was a 223 × 287 design 

matrix, with elements equal to 1 if the recombinant inbred was 

homozygous for the marker allele from B73, −1 if the recombinant 

inbred was homozygous for the marker allele from Mo17, and zero 

if the marker was heterozygous; g was a 287 × 1 vector of breed-

ing values associated with the marker allele from B73 at each of the 

marker loci; and e was a 223 × 1 vector of residual eff ects.

The testcross genetic variance (V
G
) and residual variance (V

R
) 

were estimated by analysis of variance of the Stover Index and 

Yield + Stover Index values in Cycle 0 (Lewis et al., 2010). The 

variance of breeding values at each of the 287 marker loci was 

assumed equal to V
G
/287 (Meuwissen et al., 2001). The solution g 

was obtained by solving the mixed-model equations (Henderson, 

1984) with μ as a fi xed eff ect and g as a random eff ect.

In MARS, multiple regression of Stover Index and Yield 

+ Stover Index values on the number of marker alleles (0 or 2) 

from B73 was performed on a chromosome-by-chromosome 

basis (Bernardo and Charcosset, 2006). Signifi cant markers on 

each chromosome were identifi ed by backward elimination. A 

relaxed signifi cance level (P = 0.10), which has been found to 

maximize the response to MARS (Hospital et al., 1997; John-

son, 2001), was used. Final multiple-regression coeffi  cients were 

obtained by jointly analyzing all the markers found signifi cant 

in the per-chromosome analyses.

Cycles 1 and 2
Selection in Cycles 1 and 2 was based only on markers. The two 

marker-based selection schemes and the two selection indices led 

to four diff erent selection programs: GWS for the Stover Index; 

GWS for the Yield + Stover Index; MARS for the Stover Index; 

and MARS for the Yield + Stover Index. In MARS, the same 

set of signifi cant markers (chosen in Cycle 0) was used in Cycles 

1 and 2. Cycles 1 and 2 were grown in an off -season nursery on 

Molokai, Hawaii, between October 2009 and May 2010.

In each selection program, a total of 192 plants were 

grown in each of Cycles 1 and 2. Leaf samples were collected 

at the seedling stage and were sent to DNA LandMarks for 

SNP genotyping. In GWS, the performance of the 192 plants 

in each cycle was predicted as Mg, where M was a 192 × 287 

matrix with elements of 1, 0, and −1 (i.e., as in X), and g was 

obtained from mixed-model analysis of the Cycle 0 testcrosses. 

Nicollet clay loam in Waseca and Normania and Ves loam in 

Lamberton). Data were recorded for the following agronomic 

traits: grain yield (Mg ha−1, adjusted to 155 g kg−1 moisture); 

grain moisture (g kg−1); stalk lodging (percentage of plants with 

stalks broken below the ear); and root lodging (percentage of 

plants leaning at more than a 45° angle from the vertical).

The testcrosses were also evaluated for Glucose, Glucose 

Release, and Lignin. In a set of 154 calibration samples, cell 

wall concentration and composition were determined using the 

Uppsala dietary fi ber method (Theander et al., 1995), whereas 

sugar release, after dilute acid/high-temperature pretreatment 

and enzymatic saccharifi cation, was measured using a modi-

fi cation of the method of Dien et al. (2006). Lignin was mea-

sured by the Klason lignin procedure (Theander et al., 1995). 

Near-infrared refl ectance spectroscopy (NIRS) calibration 

equations were developed from the wet chemistry data for the 

154 calibration samples and their associated NIRS spectral data 

as described by Shenk and Westerhaus (1991). The NIRS cali-

bration equations were then used to predict Glucose, Glucose 

Release, and Lignin in the entire set of stover samples.

Multitrait Selection Indices
The Cycle 0 phenotypic data were used to construct two multi-

ple-trait selection indices. First, a Stover Index was constructed 

as a nonparametric rank-sum index (Kang, 1988) that gave equal 

weights to high Glucose Release, low Lignin, and high Glucose. 

The sum of the ranks for the three traits was calculated, for exam-

ple, a testcross ranked 5th for Glucose Release, 10th for Lignin, 

and 15th for Glucose had a Stover Index value of 5 + 10 + 15 = 30.

Second, a Yield + Stover Index was constructed as follows. 

A Yield Index was constructed as I = (grain yield in t ha−1) − 

0.028(grain moisture in g H
2
O kg−1) − 0.059(stalk lodging per-

centage) − 0.036(root lodging percentage), where the weights 

were the retrospective-index weights that have been used by a 

team of experienced commercial maize breeders (Bernardo, 

1991). The 223 testcrosses were ranked according to their values 

for the Yield Index. The Yield + Stover Index was then calcu-

lated as the sum of ranks for I and for the Stover Index. The Yield 

+ Stover Index therefore gave equal weights to grain yield and 

agronomic traits as a whole and to stover-quality traits as a whole.

Selection of Cycle 0 Individuals 
to Form Cycle 1
Selection in Cycle 0 was based on phenotypic data only as rec-

ommended by Bernardo and Yu (2007). Testcrosses of the 223 

recombinant inbreds were ranked according to their Stover Index 

scores and Yield + Stover Index scores. The 10 recombinant 

inbreds with the highest Stover Index scores were intermated 

for two generations to form Stover Index Cycle 1 (Fig. 1). Like-

wise, the 10 recombinant inbreds with the highest Yield + Stover 

Index scores were intermated for two generations to form Yield 

+ Stover Index Cycle 1. The two generations of intermating were 

conducted in an off -season nursery on Molokai, Hawaii, in Sep-

tember 2008 to May 2009. In the fi rst generation of intermating, 

each selected recombinant inbred was crossed to a balanced bulk 

of the other nine selected recombinant inbreds to obtain F
1
 seeds 

with a one known parent. This procedure resulted in 10 half-sib 

bulks. In the second generation of intermating, each half-sib bulk 
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In MARS, multiple-regression predictions of the performance 

of the individual plants were based on the signifi cant mark-

ers only as described by Bernardo et al. (2006). In each of the 

four selection programs, the 10 plants with the best predicted 

performance were selected in each cycle and were intermated 

by dividing the 10 plants into fi ve pairs according to similarity 

of fl owering date and making reciprocal crosses between the 

plants in each pair. The next cycle of selection was formed by 

bulking equal numbers of kernels from the fi ve paired crosses.

Progress from Selection
To form a single entry for Cycle 0, equal amounts of remnant 

testcross seed were bulked from all 223 intermated B73 × Mo17 

recombinant inbreds. For each of the four selection programs, 

64 random plants in each cycle were testcrossed to the same 

Monsanto tester used in Cycle 0. Kernels from the resulting 

ears were bulked to form testcrosses of Cycles 1, 2, and 3. Test-

crosses of 11 bulked entries were evaluated: Cycle 0; Stover 

Index Cycle 1; Yield + Stover Index Cycle 1; Cycles 2 and 3 

of GWS for Stover Index; Cycles 2 and 3 of GWS for Yield + 

Stover Index; Cycles 2 and 3 of MARS for Stover Index; and 

Cycles 2 and 3 of MARS for Yield + Stover Index.

The 11 entries were evaluated in 2010, in a randomized com-

plete block design with two replications, at the same four locations 

used in the Cycle 0 trials in 2007. The 11 entries were also evalu-

ated, in a randomized complete block design with three replica-

tions, at St. Paul, MN. The entries were grown in four-row plots, 

each row 5 m long and spaced 0.76 m apart, and at a plant popula-

tion density of 77,000 plants ha−1. The traits evaluated and proce-

dures for measuring the traits were the same as those used in Cycle 

0 (Lewis et al., 2010). Glucose, Glucose Release, and Lignin were 

measured by both wet chemistry and NIRS predictions.

In accordance with standard protocol, the NIRS calibra-

tion equations used for the 2010 evaluations were updated ver-

sions of the original calibration equations used for Cycle 0 in 

2007. This updating was done by choosing 25 stover samples 

from the 2010 fi eld trials, adding these 25 samples to the orig-

inal set of 154 calibration samples from 2007, and obtaining 

new NIRS calibration equations for Glucose, Glucose Release, 

and Lignin. The 25 samples used for updating were chosen as 

follows. First, 13 samples whose wet chemistry values were 

deemed outliers were excluded. Such outliers were identifi ed 

by calculating the diff erences among trait values in diff erent 

replications within the same location, calculating the standard 

deviation of the diff erence, and determining which samples had 

between-replication diff erences signifi cant at P = 0.01. Second, 

the Intrasoft International NIRS 3 version 4.0 software pro-

grams “Center” and “Select” were used to choose 25 samples 

that represented the spectral diversity of the entire set of non-

outlier samples from 2010. The wet chemistry results should 

be the best estimate of the true value for the populations, but 

because the selection was based on the original NIRS results, 

both sets of results are presented.

To account for missing plots, least-squares means of the 

entries were calculated with SAS version 9.2 (Cary, NC). The 

Stover Index and the Yield + Stover Index were obtained by 

ranking the entries within each index. Least signifi cant diff er-

ences (at a comparison-wise signifi cance level of P = 0.05) were 

obtained with the entry × location mean squares from analysis 

of variance as the error term. Given the known variability of 

selection responses in MARS ( Johnson, 2004), linear contrasts 

among combinations of means were also tested for their sig-

nifi cance. In particular, comparisons were made among (i) the 

mean of Cycles 2 and 3 in GWS, (ii) the mean of Cycles 2 and 

3 in MARS, and (iii) the mean of Cycle 1.

Population Genetics of Genomewide 
Selection and Marker-assisted Recurrent 
Selection Cycles
For the SNP markers with signifi cant eff ects for the Stover 

Index and for the Yield + Stover Index, correlations between 

Cycle 0 marker eff ects in MARS and in GWS were calculated. 

Across all markers used in GWS and in MARS, changes in 

marker allele frequencies were calculated from one cycle to the 

next. Inbreeding coeffi  cients within each cycle were calculated 

as 1 − H
Cn

/H
C0

, where H
Cn

 was the mean marker heterozygos-

ity in Cycle n whereas H
C0

 was the expected mean marker het-

erozygosity in Cycle 0. We considered Cycle 0 as a noninbred 

reference population and, with the SNP markers having been 

chosen for their polymorphism between B73 and Mo17, the 

value of H
C0

 was 0.5. H
Cn

 was determined from the observed 

SNP genotypes in Cycles 1 and 2 and was equal to the expected 

heterozygosity in Cycle 3, given the genotypes of the selected 

Cycle 2 plants. Linkage disequilibrium in the GWS populations 

was estimated by calculating the r2 between markers through 

Haploview version 4.0 software (Barrett et al., 2005).

RESULTS AND DISCUSSION

Response to Genomewide Selection 
and Marker-assisted Recurrent Selection: 
Selection Indices
Selection-index gains through three cycles of selection 
were larger with GWS than with MARS. In the Stover 
Index populations, the Stover Index at Cycle 3 (for both 
the wet chemistry and NIRS results) was 14% higher (sig-
nifi cant at P = 0.05) with GWS than with MARS (Fig. 
2). In the Yield + Stover Index populations, the Yield + 
Stover Index at Cycle 3 was 33% higher (signifi cant at P 
= 0.05) with GWS than with MARS for the wet chemis-
try results, and 50% higher (signifi cant at P = 0.05) with 
GWS than with MARS for the NIRS results. In the Yield 
+ Stover Index populations, the Yield Index at Cycle 3 
was not signifi cantly higher with GWS than with MARS 
(Table 1). However, the Yield Index in both Cycles 2 and 
3 was signifi cantly higher than the Yield Index in Cycle 1 
with GWS, but not with MARS.

The 14 to 50% superiority in gains from GWS over 
MARS were consistent with previous simulation and cross-
validation results. In a simulation experiment very similar in 
design to the empirical experiments reported here, the gain 
from GWS was 18 to 43% larger than gain from MARS 
for traits controlled by 20, 40, or 100 QTL and with a heri-
tability of 0.20, 0.50, or 0.80 (Bernardo and Yu, 2007). In 
a previous analysis of the Cycle 0 population, maximum 
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prediction accuracies for the Yield + Stover Index were 0.70 
with GWS and 0.51 with MARS (Lorenzana and Bernardo, 
2009). Likewise, maximum prediction accuracies for the 
Stover Index were 0.65 with GWS and 0.41 with MARS.

Marker eff ects for the Stover Index and Yield + Stover 
Index were calculated from NIRS measurements of Glu-
cose, Glucose Release, and Lignin in Cycle 0, and changes 
in the Stover Index and Yield + Stover Index—as mea-
sured by NIRS—were generally in the positive direction 
(Fig. 2). On the other hand, the wet chemistry results for 
the Stover Index and the Yield + Stover Index generally 
showed a decrease in performance in Cycles 2 and 3 com-
pared with Cycle 1 (Fig. 2). In Cycle 0, the correlations 
between NIRS predictions and wet chemistry measure-
ments were 0.96 for Glucose, 0.91 for Glucose Release, 
and 0.81 for Lignin on a dry matter basis (Lewis et al., 
2010). After selection, the correlation between NIRS pre-
dictions and wet chemistry measurements remained high 
for Glucose (r = 0.82) but decreased substantially for Glu-
cose Release (r = 0.37) and Lignin (r = 0.31). This incon-
sistency may have contributed to the discrepancy in selec-
tion responses as measured by NIRS vs. wet chemistry.

In general, we can expect selection gain primarily for the 
criteria used during the selection process (i.e., NIRS predic-
tions) regardless of how predictive those criteria are of the 
true, underlying values of the traits. Our results seem to sug-
gest selection for the NIRS phenotype rather than for the 
underlying values as measured by wet chemistry. Further-
more, in a MARS experiment with six maize populations, 

Figure 2. Response to genomewide selection (GWS) and marker-

assisted recurrent selection (MARS) in testcrosses of the inter-

mated B73 × Mo17 maize population. Selection in Cycle 0 was 

based on phenotypic values, whereas selection in Cycles 1 and 2 

was based on marker effects. The x-axis assumes that testcross 

phenotypic selection in Cycle 0 requires 2 yr, whereas each cycle 

of marker-only selection requires 4 mo. The LSD (P = 0.05) values 

for the indices were as follows: 0.73 for Stover Index (wet chemis-

try) in Stover Index populations, 0.72 for Stover Index (near-infra-

red refl ectance spectroscopy [NIRS]) in Stover Index populations; 

1.04 for Yield + Stover Index (wet chemistry); and 0.62 for Yield + 

Stover Index (NIRS). The error bars indicate half of the LSD values.

Table 1. Trait means for 11 maize populations developed by genomewide selection (GWS) and by marker-assisted recurrent 

selection (MARS) for a Stover Index and a Yield + Stover Index.

Population
Grain 
yield Moisture

Root 
lodging

Stalk 
lodging

Yield 
Index

Wet chemistry NIRS†

Glucose
Glucose 
release Lignin Glucose

Glucose 
release Lignin

Mg ha−1 g kg−1 dm ————— % ————— g kg−1 dm g kg−1 g kg−1 CW‡ g kg−1 dm g kg−1 g kg−1 CW

C0 10.4 238 7.2 0.5 3.45 300 509 203 294 514 201

Stover Index

 C1 10.4 223 5.0 0.2 307 548* 195 308* 527 199

 GWS C2 10.1 224 1.5* 0.0* 317* 536 196 311* 533* 198

 GWS C3 10.0 222 2.3 0.4 313 506 193* 312* 537* 196

 MARS C2 9.9 223 7.4 0.0* 309 545* 197 307 536* 200

 MARS C3 10.4 226 3.9 0.2 309 545* 198 304 539* 195

Yield + Stover Index

 C1 10.1 230 4.2 0.3 3.53 312 517 195* 305 529 199

 GWS C2 10.8 218* 8.0 0.5 4.32* 314* 517 199 311* 532 202

 GWS C3 10.7 228 1.3* 0.0* 4.32* 300 549* 197 300 529 199

 MARS C2 9.7 207*§ 2.4 0.1 3.78 311 517 196 308* 524 201

 MARS C3 10.4 230 2.9 0.1 3.89 305 511 197 305 521 201

Mean 10.3 229 4.2 0.2 308 527 196 305 530 199

LSD
0.05 0.8 17 5.4 0.4 0.78 13 35 7 13 18 6

* Cycle 1 (C1), Cycle 2 (C2), or Cycle 3 (C3) means were signifi cantly different (P = 0.05) from the mean of the Cycle 0 (C0) population.

† Near-infrared refl ectance spectroscopy.

‡ CW, cell weight.

§ Mean was signifi cantly different (P = 0.05) from the mean of the C1 population.
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grain yield decreased from Cycle 1 to Cycle 2 in two popula-
tions and grain moisture increased from Cycle 1 to Cycle 2 
in three populations (Johnson, 2004). The variable rates of 
genetic gain, both positive and negative, we observed over 
multiple cycles of selection were therefore consistent with 
previous MARS studies (Johnson, 2004).

Most of the gains in selection were obtained in Cycle 
1, which resulted from phenotypic selection in Cycle 0. 
Previous simulation results have shown that the eventual 
gains after multiple cycles of GWS are slightly larger if 
selection in Cycle 0 is based on phenotypic values instead 
of a phenotype plus marker index (Bernardo and Yu, 
2007). Furthermore, a breeder might consider multiple 
breeding populations as candidates for GWS but would 
likely discard those populations that perform poorly in 
the Cycle 0 yield trials. Selection in Cycle 0 based on 
phenotypic values instead of markers therefore prevents 
the unneeded genotyping of Cycle 0 populations that are 
immediately discarded for their poor performance.

Previous cross-validation analysis of the Cycle 0 
population indicated that, as we observed in the current 
study, the gain from one cycle of GWS is expected to be 
less than the gain from one cycle of phenotypic selection 
(Lorenzana and Bernardo, 2009). The lower expected and 
observed per-cycle gains with GWS than with phenotypic 
selection indicate that GWS is most useful (i) when geno-
typing is cheaper than phenotyping as was the case in our 
experiments, and (ii) when multiple cycles of selection are 
conducted when heritability is eff ectively zero, such as in 
an off -season nursery or greenhouse (Bernardo and Yu, 
2007). Aggressive use of an off -season nursery or green-
house could allow three generations of marker-based selec-
tion each year in maize, with genetic gains being made in 
each generation. Such gains per unit time, as well as gains 
per cycle, are shown in Fig. 2, assuming that one cycle of 
testcross phenotypic selection requires 2 yr whereas one 
cycle of marker-based selection requires 4 mo.

Overall, our results indicate that in a recurrent selec-
tion scheme, using all available markers for predicting 
genotypic value leads to greater genetic gain than using 
the subset of markers with signifi cant eff ects. To our 
knowledge this is the fi rst reported empirical comparison 
of GWS and MARS in crops.

Response to Genomewide Selection 
and Marker-assisted Recurrent Selection: 
Individual Traits
The diff erent cycles of selection showed signifi cant varia-
tion (P = 0.05) for each trait (Table 1). Improvement 
over Cycle 0 was observed for all traits except for grain 
yield and Lignin measured by NIRS. However, except 
for grain moisture in Cycle 2 of MARS, none of the 
GWS and MARS cycles showed any improvement over 
Cycle 1 (which, as previously mentioned, was obtained by 

phenotypic selection in Cycle 0). The signifi cant improve-
ments in the NIRS-based Yield + Stover Index and Sto-
ver Index (Fig. 2) from Cycle 1 to Cycle 3 of GWS were 
therefore not accompanied by signifi cant improvements 
in performance for individual traits. Nevertheless, lin-
ear contrasts indicated that in the Yield + Stover Index 
populations, mean grain yield was 0.69 Mg ha−1 higher 
(signifi cant at P = 0.05) in Cycles 2 and 3 of GWS than 
in Cycles 2 and 3 of MARS. Likewise, in the Yield + 
Stover Index populations, mean Glucose Release (mea-
sured by wet chemistry) was 20 g kg−1 higher (signifi cant 
at P = 0.05) in Cycles 2 and 3 of GWS than in Cycles 2 
and 3 of MARS.

A selection index has been shown to be the most effi  -
cient approach to improve multiple traits, and is superior to 
the use of independent culling levels or tandem selection. 
But when selection is for t traits, the improvement for a 
given trait is on average only 1/√t as large as the improve-
ment obtained from selection for only that trait (Hazel and 
Lush, 1942). Having overall improvements in selection 
indices comprising three traits (Stover Index) or seven traits 
(Yield + Stover Index) without detectable improvements in 
each component trait was therefore not unexpected.

We calculated marker eff ects for the Stover Index and 
Yield + Stover Index themselves, rather than for the com-
ponent traits of each index. We used this approach to have 
an equal comparison between MARS and GWS. Because 
GWS uses all available markers, it would have been pos-
sible to calculate marker eff ects for each component trait 
independently, and then calculate the Stover Index and 
Yield + Stover Index based on the predicted performance 
for each trait. This approach, however, was not possible in 
MARS because diff erent traits would have identifi ed dif-
ferent markers as signifi cant. We speculate that calculating 
marker eff ects for individual traits rather than for an index 
of multiple traits may lead to better control of changes in 
individual component traits in GWS.

Previous eff orts to reduce the lignin content of maize 
stover (e.g., by brown midrib mutant genes) have often 
resulted in increased root or stalk lodging (Barriere and 
Argillier, 1993; Tesso and Ejeta, 2011). The Stover Index 
GWS Cycle 2 population and the Yield + Stover Index 
Cycle 1 population had signifi cantly less Lignin (as esti-
mated by wet chemistry) than the Cycle 0 population but 
neither population showed signifi cant changes in stalk or 
root lodging. This result was consistent with the nonsig-
nifi cant genetic correlations between Lignin and stalk and 
root lodging in Cycle 0 (Lewis et al., 2010). On the other 
hand, the maximum reduction in Lignin in our study (10 
g kg−1 cell weight based on wet chemistry; Table 1) was 
much smaller than the 51 g kg−1 reduction reported for 
the bmr2 mutation and 40 g kg−1 reduction reported for 
the bmr3 mutation (Chabbert et al., 1994).
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Population Genetics of Genomewide 
Selection and Marker-assisted Recurrent 
Selection Cycles
A total of 58 SNP markers were signifi cant (P = 0.10) for 
the Stover Index and 59 SNP markers were signifi cant for 
the Yield + Stover Index. The mean of the absolute values 
of marker eff ects was 4.8 to 5.1 times larger with MARS 
than with GWS (Fig. 3). Among the 58 SNP markers used 
in MARS for the Stover Index, the correlation between 
marker-eff ect estimates in MARS and in GWS was 0.62. 
Among the 59 SNP markers used in MARS for the Yield 
+ Stover Index, the correlation between marker-eff ect 
estimates in MARS and in GWS was 0.68.

In MARS, changes in mean SNP allele frequency were 
larger from Cycle 1 to Cycle 2 (0.14 to 0.15) than from Cycle 
2 to Cycle 3 (0.09 to 0.10; Table 2). In GWS, per-cycle 
changes in mean SNP allele frequency were fairly constant 
from Cycle 1 to Cycle 3. From Cycle 1 to Cycle 3, the 
change in mean allele frequency at the SNP markers used in 
selection was slightly higher with MARS (0.24) than with 
GWS (0.22). These results were expected because selection 
was concentrated at fewer marker loci in MARS than in 
GWS. Across the two selection indices and both selection 
methods, correlation coeffi  cients between the estimated 
size of the marker eff ect and the change in marker allele 
frequency were moderate, ranging from 0.45 to 0.54.

The observed frequencies of heterozygotes at the SNP 
markers indicated that the GWS and MARS cycles became 
increasingly inbred as selection progressed (Table 2). Based 
on all 287 SNP markers, the estimated inbreeding coeffi  -
cients in Cycle 3 of GWS were 0.28 for the Yield + Stover 

Index population and 0.36 for the Stover Index population. 
Based on the 58 or 59 SNP markers used in MARS, the 
inbreeding coeffi  cients in Cycle 3 of MARS were 0.33 for 
the Yield + Stover Index population and 0.38 for the Stover 
Index population. When estimation of inbreeding in the 
GWS populations was restricted to the 58 or 59 SNP mark-
ers used in MARS, the inbreeding coeffi  cients became very 
close to those observed in the MARS cycles.

Inbreeding in the GWS and MARS populations did 
not cause inbreeding depression because the performance 
of each cycle was evaluated based on testcross performance 
(to an unrelated inbred) rather than per se performance. 
Inbreeding in the GWS and MARS populations was 
expected to restrict long-term selection response. How-
ever, the objective in our study was to maximize short-
term response and we therefore selected and intermated 
only 10 recombinant inbreds or individual plants in each 
cycle. In the absence of selection, intermating 10 recom-
binant inbreds in Cycle 0 would have led to an inbreed-
ing coeffi  cient of 0.10, whereas intermating 10 plants in 
each succeeding cycle would have increased inbreeding 
by 0.05. The higher rates of loss of heterozygosity in the 
GWS and MARS populations (Table 2) therefore also 
refl ected the eff ect of selection.

The GWS approach exploits linkage disequilibrium 
among markers, and a minimum r2 between adjacent 
markers of 0.10 to 0.20 has been recommended for GWS 
(Calus et al., 2008; Hayes et al., 2009). With 287 SNP 
markers used in GWS in the current study, the mean r2 

Figure 3. Single nucleotide polymorphism (SNP) marker effects 

for multiple-trait indices with genomewide selection (GWS) and 

marker-assisted recurrent selection (MARS) in testcrosses of the 

intermated B73 × Mo17 maize population.

Table 2. Changes in single nucleotide polymorphism (SNP) 

allele frequency and SNP-based inbreeding coeffi cients 

in maize populations developed by genomewide selection 

(GWS) and by marker-assisted recurrent selection (MARS) 

for a Stover Index and a Yield + Stover Index.

Population†

Mean 
change in 
SNP allele 
frequency 

from 
previous 

cycle‡

Inbreeding 
coeffi cient

Mean r2 
between 
adjacent 

SNP 
markers§All SNPs

SNPs used 
in MARS

Stover Index

 C1 0.14 0.17 0.22

 GWS C2 0.11 0.24 0.26 0.44

 GWS C3 0.12 0.36 0.39 0.40

 MARS C2 0.14 0.26

 MARS C3 0.09 0.38

Yield + Stover Index

 C1 0.14 0.16 0.14

 GWS C2 0.11 0.21 0.28 0.44

 GWS C3 0.09 0.28 0.34 0.39

 MARS C2 0.15 0.26

 MARS C3 0.10 0.33

† C0, Cycle 0; C1, Cycle 1; C2, Cycle 2; or C3, Cycle 3.

‡ Mean of absolute values of the change in frequency of the SNP alleles from Mo17.

§ Mean r2 between adjacent SNP markers was 0.45 in C0.
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between adjacent markers was 0.45 in Cycle 0. This high 
level of initial linkage disequilibrium explains why high 
prediction accuracies were previously found in Cycle 0 
across a wide range of numbers of markers. In particular, 
for a population size of N = 178 recombinant inbreds in 
Cycle 0, prediction accuracies for the Yield + Stover Index 
were 0.66 with 256 markers, 0.68 with 512 markers, and 
0.68 with 768 markers (Lorenzana and Bernardo, 2009). 
For the Stover Index, prediction accuracies were 0.56 
with 256 markers, 0.63 with 512 markers, and 0.64 with 
768 markers. Given these previous results for the Cycle 0 
population (Lorenzana and Bernardo, 2009), we consid-
ered 287 SNP markers and N = 223 recombinant inbreds 
as adequate for our experiment. The mean r2 between 
adjacent markers decreased only very slightly to 0.44 in 
the Cycle 1 populations and to 0.39 to 0.40 in the Cycle 
2 populations (Table 2). In addition to a slow approach 
to linkage equilibrium for closely linked marker loci, 
inbreeding and selection could also have helped maintain 
a high r2 between adjacent markers.

The RR-BLUP approach we used to model SNP 
eff ects involved the biologically inaccurate but computa-
tionally convenient assumptions that the SNP eff ects had 
equal distributions and that epistasis was absent (Meuwis-
sen et al., 2001). The RR-BLUP approach is in contrast to 
a Bayesian estimation framework, which allows for unique 
variances for each marker locus (Meuwissen et al., 2001). 
Compared to the RR-BLUP approach used here, previ-
ous work in maize (Lorenzana and Bernardo, 2009; Guo 
et al., 2012), barley (Lorenzana and Bernardo, 2009; Iwata 
and Jannink, 2011; Heslot et al., 2012), wheat (Heff ner et 
al., 2011; Heslot et al., 2012), and oat (Asoro et al., 2011) 
have shown little to no improvement from Bayesian esti-
mation. Using the same B73 × Mo17 testcross population 
we studied, Lorenzana and Bernardo (2009) found that 
RR-BLUP performed as well or better than an empirical 
Bayes method that allowed epistasis and unequal marker 
variances (Xu, 2007). Bayesian procedures for GWS have 
been found useful for traits with major QTL (Hayes et al., 
2010; Resende et al., 2012), but no major QTL for yield, 
agronomic traits, or stover-quality traits were detected in 
the Cycle 0 population (Lorenzana et al., 2010).

Wet Chemistry versus Near-infrared 
Refl ectance Spectroscopy for Measuring 
Stover Quality
The NIRS technology enables many samples to be assayed 
very effi  ciently, whereas the wet chemistry process is time-
consuming and more expensive (Hames et al., 2003). In par-
ticular, the cost of phenotyping for Glucose, Glucose Release, 
and Lignin in our study was $153 per sample with wet chem-
istry and was less than $5 per sample with NIRS. Strictly 
speaking, however, the NIRS predictions are valid only for 
populations that have the same spectral and compositional 

characteristics as the training population used to develop 
the NIRS prediction equations. If the spectral and compo-
sitional characteristics change through selection, the original 
NIRS prediction equations may no longer be valid. In accor-
dance with commonly accepted procedures, we attempted 
to account for such changes by choosing 25 stover samples 
from the 2010 fi eld trials, adding these 25 samples to the 
original set of 154 calibration samples from Cycle 0 (evalu-
ated in 2007), and obtaining new NIRS calibration equa-
tions for Glucose, Glucose Release, and Lignin. As previ-
ously mentioned, the correlation between NIRS predictions 
and wet chemistry measurements remained high for Glucose 
(r = 0.82) but decreased substantially for Glucose Release 
(r = 0.37) and Lignin (r = 0.31) even with the updated NIRS 
calibration equations. Further research is needed on the use 
of NIRS when spectral and compositional characteristics of 
plant biomass change through selection.
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