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RESEARCH

Maize breeding typically involves crossing two inbred par-
ents, developing inbred progeny from the biparental cross, 

and selecting the best new inbreds on the basis of testcross per-
formance (Hallauer, 1990). Traditionally, selection for complex 
traits has been done by field evaluation of testcrosses in multiple 
environments. Genomewide selection (or genomic selection) 
(Meuwissen et al., 2001) allows the prediction of genotypic values 
of individuals for complex traits on the basis of marker informa-
tion. In genomewide selection, marker effects are estimated from 
a training population, which has been genotyped and pheno-
typed. Genotypic values of individuals in a test population, which 
has been genotyped but not phenotyped, are then predicted from 
the marker effects estimated from the training population.

Different breeding schemes for genomewide selection have 
been proposed and studied in maize and in other species (Ber-
nardo, 2009; Bernardo and Yu, 2007; Heffner et al., 2010; Rie-
delsheimer et al., 2012, 2013; Windhausen et al., 2012). Regard-
less of the breeding scheme, the rMG must be high enough for 
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genomewide selection to be time and cost effective. The 
expected prediction accuracy [E(rMG)] has been previously 
derived as a function of N, h2, and Me affecting the trait 
(Daetwyler et al., 2008):
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The Me pertains to the idealized concept of having inde-
pendent chromosome segments, with each segment con-
taining a QTL–marker pair and with all the QTL having 
additive, equal effects (Daetwyler et al., 2008; Goddard, 
2009). When the genome is saturated by markers, Me is 
generally calculated on the basis of the effective population 
size and the genome size (Goddard, 2009; Lorenz, 2013; 
Meuwissen and Goddard, 2010). The Me can also be calcu-
lated by the eigenvalues of the marker correlation matrix, 
according to the same approach for calculating the effec-
tive number of independent tests in association mapping 
when the markers are highly correlated (Li and Ji, 2005).

Before they commit time and resources to genomewide 
selection, breeders want to know whether or not rMG will be 
high enough in a cross. Previous empirical studies on the cor-
respondence between observed and predicted rMG have been 
few and were limited by the number of populations studied. 
In five maize biparental crosses, the observed rMG agreed well 
with the rMG expected from Eq. [1] (Riedelsheimer et al., 
2013). In four crosses in maize, barley (Hordeum vulgare L.) 
and Arabidopsis thaliana (L.) Heynh, the observed rMG gen-
erally agreed with E(rMG) but uncertainty in Me made the 
comparisons difficult (Combs and Bernardo, 2013a).

The current study utilizes phenotypic and marker 
data from 969 biparental maize populations in the Mon-
santo breeding program. The data in this study therefore 
represent the genetic backgrounds, traits, h2, population 
sizes, and extent of testing in a commercial breeding 
program. As such, the data can give a realistic indication 
of the rMG for different traits in maize and of the corre-
spondence between the observed and expected rMG when 
genomewide selection is routinely practiced on a wide 
scale. To avoid any confounding effects of a difference in 
the genetic constitution of the training population and 
test population (Daetwyler et al., 2008), we analyzed each 
of the 969 biparental crosses individually. Our objectives 
were to determine: (i) the mean and variability of rMG in 
maize biparental populations, (ii) if rMG can be reliably 
predicted in advance; and (iii) the how rMG is affected by 
traits, h2, N, and NM in biparental populations.

MATERIALS AND METHODS
Phenotypic and Marker Data
The 969 maize populations comprised two maize heterotic 
groups, with 485 biparental crosses in Group 1 and 484 crosses 
in Group 2. The number of lines in each cross ranged from 

35 to 356 and had a mean of 156. The lines in each cross were 
derived from the following generations (number of crosses in 
parentheses): F2 (707), BC1 (186), BC1F2 (47), doubled haploid 
(DH) from F1 (17), and DH from F2 (12). For the F2, BC1, and 
BC1F2 populations, plants grown from 10 to 15 selfed seeds 
derived from each individual plant were testcrossed to an inbred 
tester from the opposite heterotic group. For DH populations, 
each DH line was crossed to an inbred tester.

The populations were evaluated for the following traits: 
grain yield (Mg ha-1), moisture (g H2O kg-1), test weight (kg 
hl–1), stalk lodging (%), root lodging (%), plant height (cm), and 
ear height (cm). Each experiment was conducted in 2 to 15 
locations (usually 6–8 locations) during a single year (2000–
2008). Phenotypic data were available as the testcross mean of 
each line at each location. Not all traits were measured in all 
locations and in all populations (Table 1). To help ensure that 
the lodging traits were adequately expressed within a location, 
only those locations with a mean stalk lodging of at least 5% or 
a mean root lodging of at least 5% were retained for these two 
traits, and a population was retained for these two traits only if 
data were available for more than one location.

The number of polymorphic single nucleotide polymorphism 
(SNP) markers used to genotype the lines in each population 
ranged from 31 to 119 and had a mean of 70. The parents of the 
969 populations were genotyped with 2911 SNP markers. The 
lines within each cross were genotyped with 31 to 119 (mean of 
70) SNP markers that were polymorphic between the two parents 
and that were a subset of the 2911 SNP markers used for geno-
typing all the parents. When the set of markers (31 to 119 SNP 
loci) used for each population did not have data for some lines, 
the missing marker data were imputed with fastPHASE (Scheet 
and Stephens, 2006); imputation with the full set of 2911 parental 
markers was not done. A segregating SNP locus was disregarded 
if the parents were monomorphic, if the minor allele frequency 
was <0.10, or if more than half of the data points were missing. 
Populations with < 30 markers were removed from analysis.

Heritability
Within each cross, testcross genetic (VG) and nongenetic (VR) 
variance components were calculated for each trait by restricted 
maximum likelihood via the “lmer” function in the “lme4” 
package (Bates et al., 2013). Because the data were entry means 
within each location, the genotype by environment interaction 
variance and within-location error variance were confounded in 
VR. A likelihood ratio test was used to test the significance of 
the estimates of testcross genetic variance. The p-value from the 
likelihood ratio test was divided by 2.0 to approximate an F-test 
of the null hypothesis (Holland et al., 2003). Genetic variance 
estimates with a p-value > 0.05 were considered not significant 
and the corresponding population–trait combination was dis-
carded. The data for each biparental cross were not completely 
balanced because some individuals were not evaluated at a few of 
the locations in each experiment. As such, the h2 was estimated 
on an ad hoc basis as h2 = VG/(VG + VR/l), where l was the har-
monic mean of the number of locations (Holland et al., 2003).

Observed rMG 
Genomewide marker effects were obtained by ridge-regression 
best linear unbiased prediction (RR-BLUP) as described by 
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marker and QTL, we obtained the following E(rMG) with r2 < 
1 (Appendix 1 in Supplemental Material):

( ) ( )
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In Eq. [2], we used 2 2

MM/2
r r= , the latter being the mean 

squared correlation between a marker and QTL when the 
QTL is assumed to be at the midpoint of the two markers. 
The midpoint, in turn, is the mean QTL position assuming 
a uniform distribution between two markers. The 2

MM
r can be 

calculated as the square root of the observed squared correlation 
between two marker genotypes. We found that 2 22

MM/2 MMr r=  
for BC1, F2, and DH populations but not for BC1F2 populations 
(Appendix 2 in Supplemental Material). The E(rMG_r2) values 
were therefore not calculated for the 47 BC1F2 populations. For 
all the following analyses, we used 2 2

MM/2
r r= . Although the 

assumption of complete linkage between a marker and a QTL 
was relaxed, Eq. [2] assumed that the distance between a QTL 
and a marker is constant for all marker–QTL pairs.

For each population, the Me values were calculated by 
eigenvalues of the linkage disequilibrium matrix among the 
SNP markers in each population (Li and Ji, 2005). This matrix 
was obtained by computing all pairwise squared correlations 
for markers on each individual chromosome. Eigenvalue 
decomposition was done with the “eigen” function in R (R 
Development Core Team, 2012). Given the known values of N 
and the estimated values of h2, r2, and Me, the expected rMG was 
calculated according to both Eq. [1] and [2].

Because of the uncertainty in the proper form of Me, we 
also back-calculated Me by equating the observed rMG with the 
expected rMG from Eq. [1] and [2] and solving for Me. This pro-
cedure was performed for all population–trait combinations 
(excluding BC1F2) where the observed rMG was between 0.1 and 1.

Factors Affecting rMG
We evaluated the relative importance of the following factors in 
terms of the variance in rMG explained by each factor: trait, h2, 
training population size (N being equal to NP – 1), NM, heter-
otic group, and generation type. Given their prominence in Eq. 
[1] or [2], we evaluated the variance explained by (Nh2)1/2 and 
r2(Nh2)1/2. For each trait, we also obtained the correlation coef-
ficient between the observed rMG and the following: (Nh2)1/2, 
r2(Nh2)1/2, E(rMG) from Eq. [1], and E(rMG_r2) from Eq. [2].

Meuwissen et al. (2001) and by Bernardo and Yu (2007). Sup-
pose the phenotypic data comprised NT records, each record 
being the mean performance of an individual in one of the NL 
locations. The linear model was as y = Xb + Zm + e, where 
y was an NT × 1 vector of phenotypic records, b was an NL × 
1 vector of fixed effects of locations, m was an NM × 1 vector 
of random effects of the markers, e was an NT × 1 vector of 
residuals, X was an NT × NL incidence matrix that related y to 
b, and Z was in NT × NM incidence matrix (with values of 1 
and −1 for each of the two homozygotes and 0 for the hetero-
zygote) that related y to m. The variance of marker effects was 
VG/NM (Meuwissen et al., 2001).

The rMP for each trait within each population was estimated 
by a delete-one method (Kohavi, 1995). Suppose a population 
had NP = 100 lines that had been phenotyped. The first line 
was assumed untested and its performance was predicted from 
genomewide marker effects estimated from RR-BLUP analysis 
of lines 2 to 100. The second line was then assumed untested 
and its performance was predicted from RR-BLUP analysis of 
the remaining N = NP – 1 lines. In the end, the correlation 
between the predicted genotypic value and the mean pheno-
typic value of the NP lines was calculated and was denoted 
by rMP. The value of rMG was calculated as rMP divided by the 
square root of h2 (Dekkers, 2007). For each rMP, we calculated 
the test statistic T = [rMP(NP – 2)1/2]/(1 – rMP

2)], which follows a 
tN - 2 distribution (Bobko, 2001). Significance tests for rMP (via 
T) were done through a t test. Given that significance tests for 
genetic variances had been previously done, we assumed for 
simplicity that rMG was significantly different from zero if rMP 
was significantly different from zero.

Expected rMG with Incomplete Linkage 
Disequilibrium
Equation [1] was derived with the following four assumptions 
(Daetwyler et al., 2008). First, the marker effects were derived 
from simple linear regression rather than from RR-BLUP, 
which we used in this study. Second, each marker–QTL pair 
was assumed independent of other marker–QTL pairs. Third, 
the different marker–QTL pairs (which were to be accounted 
for by Me) were assumed to have equal variances. Fourth, each 
marker–QTL pair was assumed in complete linkage disequilib-
rium. We modified Eq. [1] to retain the first three assumptions 
by Daetwyler et al. (2008) but to relax the last assumption. By 
accounting for incomplete linkage disequilibrium between a 

Table 1. Mean and range of entry-mean heritability (h2) and prediction accuracy (rMP and rMG) for different traits in 3371 popula-
tion–trait combinations in 969 maize biparental crosses.

Trait Populations

h2 rMP rMG

Mean Range Mean Range Mean Range
50%

quantiles
Standard
deviation

Yield 840 0.46 (0.17,  0.92) 0.30 (−0.34,  0.89) 0.45a† (−0.59,  1.03) (0.32, 0.59) 0.23

Moisture 943 0.66 (0.24,  0.91) 0.48 (−0.18,  0.81) 0.59c (−0.34,  0.96) (0.53, 0.71) 0.19

Test weight 894 0.56 (0.18,  0.92) 0.41 (−0.21,  0.78) 0.55b (−0.24, 1.10) (0.46, 0.69) 0.20

Stalk lodging 68 0.33 (0.19,  0.67) 0.28 (−0.13,  0.55) 0.49ab (−0.22,  1.04) (0.40, 0.64) 0.24

Root lodging 38 0.32 (0.19,  0.53) 0.23 (−0.17,  0.47) 0.4a (−0.30,  0.93) (0.21, 0.67) 0.30

Plant height 369 0.39 (0.18,  0.82) 0.29 (−0.27,  0.69) 0.47a (−0.45,  0.97) (0.33, 0.62) 0.24

Ear height 219 0.33 (0.17,  0.63) 0.24 (−0.21,  0.59) 0.42a (−0.43,  0.94) (0.27, 0.61) 0.25
† rMG values followed by the same letter were not significantly different according to a Tukey HSD test (P = 0.05).
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To further investigate the effect of N on rMG, 1533 popula-
tion–trait combinations with rounded (to the nearest tens digit) 
values of NP = 180 were selected. For each population–trait 
combination, a random subset of NP = 61, 91, 121, and 151 lines 
were obtained as a new population and the rMP within the new 
population was estimated by a delete-one method as described 
before, so that N was 60, 90, 120, and 150. For each popula-
tion–trait combination, only one random sample for the new 
population was obtained because the results were to be aver-
aged over 1533 populations. The value of h used for calculating 
rMG (Dekkers, 2007) was that obtained with the largest NP.

Similarly, to investigate the effect of NM on rMG, 45 popula-
tion–trait combinations whose NM values were larger than 100 
were selected. Markers were thinned to 2/3 of their original 
density by keeping only the first two markers out of every three 
consecutive markers. Likewise, markers were thinned to 1/3 of 
their original density by keeping only the first marker out of 
every three consecutive markers. The rMP within the new popu-
lation was estimated by a delete-one method as described before.

The effect of h2 on rMG was further studied for the popula-
tion–trait combinations with rounded NP = 180. Heritability 
values were subdivided into several intervals and the mean rMG 
in each interval was calculated. For each trait, if the number of 
populations in an interval was < 20, the mean rMG values for 
that trait were not calculated for that interval and the data were 
not shown for that trait in the interval. Because we only had a 
limited number of observations that met the above criteria for 
stalk lodging and root lodging, this analysis was not done for 
these two traits.

Likewise, the effect of (Nh2)1/2 and r2(Nh2)1/2 on rMG was 
examined by subdividing (Nh2)1/2 and r2(Nh2)1/2 into different 
intervals. For each trait, if the number of populations in an 
interval was < 20, the mean rMG values for that trait were not 
calculated for that interval and the data were not shown for that 

trait in that interval. This analysis was not done for stalk lodg-
ing and root lodging and not for BC1F2 populations.

To assess their distribution, rMG values were divided into 
different intervals and the proportion of rMG in each inter-
val was plotted against different traits for all population–trait 
combinations and plotted against different (Nh2)1/2, different 
r2(Nh2)1/2, and different values of E(rMG_r2) for population–trait 
combinations excluding BC1F2.

RESULTS AND DISCUSSION

Mean and Variability of Observed rMG
Out of 3371 population–trait combinations, 2919 (87%) had 
an rMG that was significantly different from zero (P = 0.05). 
The mean rMG was 0.52 and the individual rMG values ranged 
from −0.59 to 1.10 (Table 1). The mean rMP was 0.37 and the 
individual rMP values ranged from −0.34 to 0.89 (Table 1). 
The rMG was estimated indirectly as rMP/h (Dekkers, 2007), 
and the rMG values that exceeded 1.0 were due to sampling 
variation in both rMP and h2. Only 11 of the 3371 popula-
tion–trait combinations (0.3%) had an rMG that was negative 
and significantly different from zero (P = 0.05).

The mean, range, and standard deviation of rMG values 
differed among the seven traits. The mean rMG was high-
est for moisture and lowest for root lodging (Table 1). 
Conversely, the standard deviation of rMG was smallest 
for moisture and largest for root lodging. For grain yield, 
which was the most important trait (Bernardo, 1991), the 
mean rMG across 840 populations was 0.45 (−0.59, 1.03) 
and around 40% of the populations had an rMG equal to or 
larger than 0.50 (Fig. 1a). The middle 50% of rMG values 
for grain yield ranged from 0.32 to 0.59. For moisture, 
which was the second most important trait (Bernardo, 

Figure 1. Distribution of observed prediction accuracy (rMG) in biparental maize populations for: (a) different traits for 3371 population–trait 
combinations, (b) different r2(Nh2)1/2, (c) different expected rMG from Eq. [2] [E(rMG_r2))]; and (d) different (Nh2)1/2. Data in b, c, and d were 
for 3217 population–trait combinations for which BC1F2 populations were excluded. N = training population size, h2 = heritability on an 
entry-mean basis, and r 2 = r

MM/2

2 , where r
MM/2

2  was the mean linkage disequilibrium between a marker and quantitative trait locus (QTL) 

when the QTL was assumed to be at the midpoint of the two markers.
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rMG and E(rMG) was 0.33. The correlation between rMG and 
E(rMG_r2) was significantly different (P = 0.05) from the 
correlation between rMG and E(rMG) for grain yield, mois-
ture, and test weight, but was not significantly different for 
stalk lodging, root lodging, plant height, and ear height 
(Table 2). The correlation between rMG and E(rMG_r2) 
ranged from −0.17 for root lodging to 0.44 for moisture 
(Table 2). The correlation between rMG and E(rMG) ranged 
from −0.32 for root lodging to 0.34 for test weight. The 
correlation between rMG and E(rMG_r2) was lower for grain 
yield than for moisture and test weight. Likewise, the cor-
relation between rMG and E(rMG) was lower for grain yield 
than for moisture and test weight.

The usefulness of Eq. [1] and of Eq. [2] for predicting 
rMG therefore differed among traits. Overall, the results for 
observed rMG and expected rMG indicated that although 

1991), the mean rMG (range in parentheses) across 943 
populations was 0.59 (−0.34, 0.96) and around 80% of the 
populations had an rMG ≥ 0.50. The middle 50% of rMG 
values for moisture ranged from 0.53 to 0.71.

Among the seven traits studied, stalk lodging and root 
lodging are the two traits that are generally considered by 
maize breeders as the least consistent in their expression. 
However, the mean rMG for stalk lodging (0.49) and the 
mean rMG for root lodging (0.41) were not significantly 
different from the mean rMG for grain yield (0.45). Over-
all, the results from this 969-population study indicated 
that the mean rMG for yield and other agronomic traits in 
maize biparental crosses is in the 0.40 to 0.60 range.

Expected rMG
There were 3217 population–trait combinations after 
removing the BC1F2 populations, for which r2 cannot be 
calculated as the square root of the observed squared corre-
lation between two markers. Whereas the mean rMG across 
all the 3217 population–trait combinations was 0.52, the 
mean expected rMG according to Eq. [1] [mean E(rMG)] was 
0.74. Equation [1] (Daetwyler et al., 2008), which assumes 
perfect linkage between a marker and QTL, therefore 
grossly overestimated rMG (by 0.74 – 0.52 = 0.22). The 
mean expected rMG according to Eq. [2] [mean E(rMG_r2)] 
was 0.56. Equation [2], which accounts for imperfect link-
age between a marker and QTL, still overestimated rMG, 
but the amount of upward bias (0.56 – 0.52 = 0.04) was 
much less than with Eq. [1] from Daetwyler et al. (2008).

The mean rMG was closer to E(rMG_r2) for some traits than 
for others. These rMG – E(rMG_r2) deviations were 0.092 for 
grain yield, 0.004 for moisture, 0.008 for test weight, 0.021 
for stalk lodging, 0.102 for root lodging, 0.058 for plant 
height, and 0.080 for ear height. Across all traits, the spread 
of rMG about the mean and about E(rMG_r2) was large (Fig. 2).

Pooled across all traits, the correlation between rMG 
and E(rMG_r2) was 0.40, whereas the correlation between 

Figure 2. Observed prediction accuracy (rMG) versus expected prediction accuracy from Eq. [1] [E(rMG)] and Eq. [2] [E(rMG_r2)] for 3217 
population–trait combinations (BC1F2 populations excluded) in 969 maize biparental crosses.

Table 2. Correlation between prediction accuracy (rMG) and 
different combinations of factors that affect rMG for different 
traits in 3217 population–trait combinations (BC1F2 popula-
tions excluded) in 969 maize biparental crosses.

Trait
Popula-

tions r2(Nh2)1/2 E(rMG_r2) (Nh2)1/2 E(rMG)

Yield 799 0.30*b†B‡ 0.32*aB 0.21*aA 0.21* bA

Moisture 898 0.45*cB 0.44*bB 0.36*bC 0.32*cdA

Test weight 850 0.43*cB 0.43*bB 0.34*bcA 0.34*dA

Stalk lodging 64 −0.02aA −0.06cdA −0.02adA −0.06aeA

Root lodging 37 −0.04aA −0.17dA −0.20dA −0.32eA

Plant height 358 0.23*abA 0.21*aA 0.22*aA 0.19*abA

Ear height 211 0.20*abA 0.19*acA 0.20*acA 0.18*abcA

All 3217 0.41 0.40 0.36 0.33

* Significant at the 0.05 probability level. 
† Within columns (across different traits), correlation values followed by the same 
lowercase letter were not significantly different according to Fisher z-transforma-
tions (P = 0.05; Bobko, 2001).

‡ Within rows (across different factor combinations), correlation values followed by 
the same uppercase letter were not significantly different (P = 0.05). Significance 
tests were done by transforming the correlations to Fisher’s z and considering that 
the correlations were nonindependent because they shared the same common 
variable rMG (Bobko, 2001).
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the mean rMG across many different populations and traits 
can be predicted fairly well by Eq. [2], the rMG for any 
given trait in any given population cannot be predicted 
reliably with either Eq. [1] from Daetwyler et al. (2008) or 
with Eq. [2], which we derived.

Equation [2] had the following parameters: r2, N, h2, 
and Me. As shown later, the observed rMG was correlated 
with r2(Nh2)1/2, which was the numerator of Eq. [2]. This 
result suggested that the failure to accurately predict rMG 
was mainly due to the failure of Me to adequately mimic 
the assumptions of equal and additive effects of marker–
QTL pairs. We suggest four other reasons for the inability 
to predict rMG: (i) while we accounted for imperfect link-
age disequilibrium between a QTL and a marker in Eq. 
[2], this imperfect linkage disequilibrium itself led to not 
all QTL effects being captured and, consequently, to miss-
ing h2 (Makowsky et al., 2011; Manolio et al., 2009) in the 
model; (ii) the linear additive model did not capture all of 
the genetic variance due to epistasis not being modeled; (iii) 
sampling error in the estimates of rMP and h2, which were 
used in estimating rMG, contributed to a lower observed 
correlation between rMG and E(rMG_r2); and (iv) uncertainty 
remains regarding the proper method to calculate Me.

Previous studies have calculated Me as 2NeL, where 
Ne is the effective population size and L is the size of the 
genome in Morgans (Daetwyler et al., 2008). In a maize 
biparental population in which all individuals are in theory 
derived from Ne = 1 F1 plant, the Me is approximately 30 
when Me is calculated as 2NeL. An Me of 30 always over-
estimated rMG in the populations used in this study.

The Me values we used, which were calculated accord-
ing to Li and Ji (2005), ranged from 28 to 119 and had a 
mean of 59 in 3034 population–trait combinations (BC1F2 
populations excluded and rMG between 0.1 and 1). Because 
NM was relatively low, these Me values did not differ much 
from the actual NM, which ranged from 31 to 119 and had 
a mean of 70. When Me was back-calculated by equating 
the observed rMG to E(rMG) from Eq. [1] and solving for 
Me, the estimated values of Me ranged from 242 to 525. 
These Me values back-calculated from Eq. [1] were much 
larger than the Me calculated according to the Li and Ji 
(2005) method, larger than the actual NM, and larger than 
the value of 30 obtained as 2NeL (Table 2). When Me was 
back-calculated by equating the observed rMG to E(rMG_r2) 
from Eq. [2], the estimated values of Me ranged from 29 to 
110. These Me values back-calculated from Eq. [2] were of 
similar magnitude to the Me calculated according to the Li 
and Ji (2005) method as well as to NM (Table 2).

Furthermore, the back-calculated Me values differed 
among the traits (Table 3). Among the three traits with 
the most data, grain yield had the largest back-calculated 
Me values whereas moisture and test weight had similar 
back-calculated Me values. This result was consistent with 
the perceived complexity of the traits, with grain yield 

conceivably being controlled by more QTL compared with 
moisture and test weight. In contrast, Me calculated accord-
ing to the Li and Ji (2005) method or as 2NeL leads to the 
same Me across all traits. Overall, these results suggest that 
other methods need to be developed for calculating Me.

Association between rMG and Different  
Factor Combinations
Whereas the best way to estimate Me is unclear, N in Eq. 
[1] and [2] were known and h2 and r2 were estimated in 
this study with well-established procedures. We found 
that r2(Nh2)1/2 was most strongly associated with rMG. 
When only the intercept and a specific factor or a combi-
nation of factors was fitted, the variance in rMG explained 
by the regression model was as follows: r2(Nh2)1/2, 17.1%; 
(Nh2)1/2, 12.9%; trait, 8.4%; h2, 7.8%; N, 4.4%; genera-
tion type, 0.4%; heterotic group, 0.0%; and NM, 0.0%. 
The importance of r2(Nh2)1/2 in influencing rMG was in 
accordance with r2(Nh2)1/2 being the numerator of Eq. [2]. 
When r2(Nh2)1/2 exceeded 8, more than 90% of the rMG 
values were ≥ 0.50 (Fig. 1b).

The correlation between rMG and r2(Nh2)1/2 was not sig-
nificantly different (P = 0.05) from the correlation between 
rMG and E(rMG_r2) for each trait (Table 2). In other words, 
rMG was as strongly associated with r2(Nh2)1/2 as it was with 
E(rMG_r2). The correlations of the different factors with rMG 
were higher for grain yield, moisture, and test weight than 
for stalk lodging, root lodging, plant height, and ear height. 
Across all the traits, the correlation between rMG and r2(Nh2)1/2 
was 0.41, between rMG and E(rMG_r2) was 0.40, between rMG 
and (Nh2)1/2 was 0.36, and between rMG and E(rMG) was 0.33. 
Overall, these results indicated that E(rMG_r2) and r2(Nh2)1/2 
were the best predictors of rMG, and that breeders could 
manipulate r2(Nh2)1/2 to get a high rMG (Fig. 1b).

The mean rMG varied among traits when r2(Nh2)1/2 
or (Nh2)1/2 was kept constant (Fig. 3b, c). Grain yield 

Table 3. Effective number of chromosome segments (Me) 
back-calculated from Eq. [1] and [2] for seven different traits 
in 3034 population–trait combinations (prediction accuracy 
between 0.1 and 1; BC1F2 populations excluded) from 969 
maize biparental populations.

Trait
Popula-

tions
Mean 
NM

†

Me from 
Li and Ji 
(2005)

Mean Me 
from  

Eq. [1]

Mean Me 
from  

Eq. [2]

Yield 742 70 59 468a‡ 82c

Moisture 869 70 59 275b 29a

Test weight 811 70 59 283b 38ab

Stalk lodging 57 68 57 242ab 40ac

Root lodging 31 69 57 525ab 110ac

Plant height 338 72 60 434a 86c

Ear height 186 73 61 374ab 72bc
† NM, number of markers used in genomewide prediction in each biparental popula-
tion.

‡ Within columns, values followed by the same letter were not significantly different 
according to a Tukey HSD test (P = 0.05).
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tended to have a lower rMG compared with moisture, test 
weight, and plant height at a fixed r2(Nh2)1/2 or (Nh2)1/2. 
For grain yield and plant height, the proportion of rMG 
equal to or larger than 0.50 did not change much beyond 
r2(Nh2)1/2 = 6 and plateaued at around 50% for grain yield 
and 60 to 70% for plant height. The proportion of rMG 
equal to or larger than 0.50 increased to above 80% for 
moisture and test weight when r2(Nh2)1/2 exceeded 7.

Association between rMG and Individual Factors
As has been found in previous studies (Combs and Bernardo, 
2013a; Crossa et al., 2013; Lorenzana and Bernardo, 2009), 
increases in the individual factors N, h2, and NM generally led 

to increases in rMG, particularly when it was possible to keep 
other factors constant. There were 1533 population–trait com-
binations with the rounded number of lines equal to 180. The 
mean rMG for different training population sizes was 0.41 with 
N = 60, 0.46 with N = 90, 0.51 with N = 120, 0.54 with N = 
150, and 0.55 with rounded N = 180. These mean rMG values 
were significantly different from each other (P = 0.05), except 
for rMG with N = 150 vs. rounded N = 180.

When the rounded N was fixed at 180, rMG increased 
as h2 increased for grain yield, moisture, test weight, plant 
height, and ear height (Fig. 3a). However, the rMG for yield 
did not change much beyond h2 = 0.40. In contrast, the rMG 
for moisture and plant height kept increasing as h2 increased.

Figure 3. (a) Mean prediction accuracy (rMG) in different intervals of entry-mean heritability (h2) for five different traits in 1430 population–
trait combinations with rounded training population sizes of NP = 180; (b) proportion of rMG equal to or larger than 0.50 in different intervals 
of (Nh2)1/2 for five different traits in 3062 population–trait combinations (BC1F2 populations excluded); and (c) proportion of rMG equal to 
or larger than 0.50 in different intervals of r2(Nh2)1/2 for five different traits in 3073 population–trait combinations (BC1F2 populations ex-
cluded). N = training population size, r 2 = r

MM/2

2 , where r
MM/2

2 was the mean linkage disequilibrium between a marker and quantitative trait 
locus (QTL) when the QTL was assumed to be at the midpoint of the two markers. For all the above plots, population–trait combinations 
in an interval with <20 data points were excluded.
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As mentioned above, NM explained none of the total 
variance in rMG when other factors were not kept con-
stant. When all other factors were kept constant and the 
markers were thinned to 2/3 and 1/3 of their original 
number, the mean rMG was 0.45 when 1/3 of the markers 
were used (NM = 36), 0.49 when 2/3 of the markers were 
used (NM = 72), and 0.50 when all of the markers were 
used (NM = 107). These mean rMG values across different 
marker densities were not significantly different from each 
other (P = 0.05). In the above subset of populations, the 
mean r2 value between adjacent markers was 0.16 when 
1/3 of the markers were used, 0.41 when 2/3 of the mark-
ers were used, and 0.52 when all of the markers were used.

A minimum r2 of 0.20 between adjacent markers 
has been suggested for genomewide selection (Hayes et 
al., 2009). The mean r2 values between adjacent mark-
ers was 0.46 across the 969 biparental maize populations 
used in this study. The r2 values are typically high in bipa-
rental populations because large chromosome segments 
are passed intact from the inbred parents to the progeny 
(Smith et al., 2008). The high r2 between adjacent markers 
in this study was probably due to having only one meiosis 
in the development of lines from the F2 or BC1 popula-
tions, which constituted 92% of the 969 biparental crosses. 
These high r2 values suggest that with maize biparental 
crosses, a fairly small number of SNP markers (NM = 70 
– 120) is largely sufficient for genomewide selection. This 
agrees with a previous study that found that rMG was at or 
near maximum when the mean distance between markers 
was around 25 cM in a DH maize population (Lorenzana 
and Bernardo, 2009). On the basis of a linkage map of 
about 1750 cM (Senior et al., 1996), a 25-cM spacing 
between adjacent markers is equivalent to having 1750/25 
= 70 markers. If the linkage map is smaller because of 
fewer polymorphic markers between the parents, the NM 
equivalent to a 25-cM spacing would be even smaller. 
On the other hand, the NM needed would be higher for 
recombinant inbreds, which would have undergone sev-
eral meiotic events during their development.

Applications in Plant Breeding
Our results for 969 maize populations show that predict-
ing rMG is difficult. The observed rMG values were centered 
around the expected rMG when recombination between 
a QTL and marker was accounted for (Eq. [2]), but the 
spread of the observed rMG around the expected rMG was 
large. Breeders should also be aware that rMG as well as 
the ability to predict rMG differ among traits: grain yield 
tended to have lower rMG and lower predictability of rMG 
compared with moisture and test weight.

Our results suggest that rMG is best predicted from 
both r2(Nh2)1/2 and E(rMG_r2) from Eq. [2]. The correla-
tions with rMG were equal for r2(Nh2)1/2 and for E(rMG_r2), 
but the former cannot predict the actual value of rMG. As 

a rule of thumb, we recommend r2(Nh2)1/2 to be at least 
8. Such a rule of thumb would lead to about 90% of the 
rMG values exceeding 0.50. When r2(Nh2)1/2 is between 5 
and 6, about 50% or more of the rMG values would exceed 
0.50 for most traits. These rules of thumb apply to using a 
subset of a biparental cross to predict the performance of 
a remaining, unphenotyped subset of the same biparental 
cross or for recurrent genomewide selection within the 
same biparental cross (Combs and Bernardo, 2013b; Mass-
man et al., 2013). Other rules of thumb need to be devel-
oped for other types of training populations (e.g., pooled 
biparental crosses; Jacobson et al., 2014). Also, a marker 
density of 70 SNP loci seems sufficient for F2 lines or DH 
lines developed from an elite biparental cross.

We offer a final thought on predicting rMG: we are 
unable to precisely predict rMG for each population in the 
same way that breeders are unable to precisely predict h2, 
which measures the effectiveness of phenotypic selection. 
While we know how increasing the number of replications 
and environments increases the entry-mean h2, breed-
ers do not devote time in trying to predict h2. Instead, 
a breeder designs a yield trial on the basis of knowledge 
of how the traits vary in different environments, selects 
lines often without regard for h2 in the trial, accepts that 
the outcome of selection decisions will be poor if h2 is 
low, but is confident that selection progress can be made 
when averaged across different populations. We believe 
that, likewise, breeders should use information of how 
different factors affect rMG, design a genomewide selection 
experiment accordingly, be prepared that the outcome 
of genomewide-selection decision will be poor if rMG 
happens to be low in a particular test population, but be 
confident that routine application of genomewide selec-
tion across a breeding program will, on average, lead to 
positive gains. The results from the 969 maize biparental 
populations in this study should serve as a useful guide in 
the design of genomewide selection programs.
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