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RESEARCH

Maize (Zea mays L.) breeding typically involves crossing 
two inbreds (parent A and parent B), developing selfed or 

doubled haploid progeny from the A/B cross, and evaluating the 
progeny based on their yield and agronomic performance when 
crossed to a tester. Parents A and B are typically from the same 
heterotic group, whereas the tester is an inbred from an opposite 
heterotic group. Each A/B testcross population is developed and 
analyzed separately from other biparental testcross populations. 
Traditionally, testcross selection within a biparental cross has been 
based solely on phenotypic information (Hallauer, 1990).

Advances in single nucleotide polymorphism (SNP) 
genotyping have drastically lowered the cost of obtaining high 
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ABSTRACT
Genomewide selection within an A/B biparental 
cross is most advantageous if it could be 
effectively done before the cross is phenotyped. 
Our objectives were to determine if a general 
combining ability (GCA) model is useful for 
genomewide selection in an A/B cross, and to 
assess the influence of training population size 
(NGCA), number of crosses pooled into the training 
population (N´), linkage disequilibrium (r2), 
and heritability (h2) on the prediction accuracy 
with the GCA model. The GCA model involved 
pooling 4 to 38 maize crosses with A and B as 
one of the parents into the training population 
for an A/B cross, whereas the same background 
(SB) model involved pooling crosses between 
random inbreds. Across 30 A/B test populations, 
the mean response to selection (R) with the GCA 
model was 0.19 Mg ha–1 for testcross grain yield, 
–6 g kg–1 for moisture, and 0.38 kg hL–1 for test 
weight. These R values with the GCA model 
were 68 to 76% of the corresponding R values 
with phenotypic selection (PS). The R values 
with the SB model were only 15 to 28% of the 
R values with PS. Increasing the size of the 
training population with random crosses from 
the same heterotic group was less important 
than including crosses with A and B as one 
of the parents. Prediction accuracy was most 
highly correlated with 2 2

GCAh r N  and 2 2h r N´ .  
Our results indicated that the GCA model is 
routinely effective for genomewide selection 
within A/B crosses, before phenotyping the 
progeny in the cross.
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quality marker information. With the advent of cheap 
and quick genotyping, genomewide selection (or genomic 
selection) has been introduced (Meuwissen et al., 2001) 
and studied (Bernardo and Yu, 2007; Heffner et al., 2009; 
Lorenz et al., 2011; Heslot et al., 2012) as a method for 
predicting performance for complex traits. In genomewide 
selection, marker effects are estimated from phenotypic 
and marker data in a training population. The marker 
effects are then used to predict the performance of a test 
population that has been genotyped but not phenotyped.

The training population must be representative of the 
test population to obtain a high prediction accuracy. In 
theory, the best training population for an A/B population 
is a subset of the A/B population that has been phenotyped 
and genotyped (i.e., the population itself ). In this article, 
the use of a subset of A/B as a training population for A/B 
itself is referred to as the A/B model. Because of the need to 
phenotype a subset of A/B as the training population, the 
A/B model increases the time and cost before genomewide 
selection can be performed within a biparental cross.

To eliminate the need to phenotype the A/B population 
itself, pooling multiple biparental crosses into a training 
population has been proposed (Schulz-Streeck et al., 2012; 
Zhao et al., 2012; Riedelsheimer et al., 2013). These 
multiple biparental crosses need to be of the same genetic 
background as A/B, and need to have been previously 
genotyped and phenotyped. In a few studies, pooling 
multiple crosses into a training population was found to 
be superior to the A/B model (Schulz-Streeck et al., 2012; 
Zhao et al., 2012). The increase in prediction accuracy was 
likely due to the increase in the number of individuals in 
the training population when multiple biparental crosses 
were pooled (Schulz-Streeck et al., 2012).

The accuracy of genomewide prediction may be 
increased if identity by descent between the markers in 
the A/B test population and in the biparental crosses 
pooled into a training population is guaranteed. Suppose 
that * is any inbred that is in the same heterotic group 
as A and B, that the same tester is used for all biparental 
crosses, and that the SNP markers analyzed are those 
that are polymorphic between A and B. If all available 
A/* crosses are pooled into a training population, a SNP 
allele for which an effect is estimated in the training 
population (marker allele carried by parent A in the 
pooled A/* biparental crosses) will be identical by descent 
to the corresponding SNP allele unique to A in the A/B 
test population. Likewise, if all available */B crosses are 
pooled into a training population, a SNP allele for which 
an effect is estimated in the training population (marker 
allele carried by parent B in the pooled */B biparental 
crosses) will be identical by descent to the corresponding 
SNP allele unique to B in the A/B test population.

To predict the performance within an A/B test 
population, pooling all available A/* and */B biparental 

crosses into a training population for A/B is, therefore, 
likely to be superior to pooling multiple */* crosses into 
a training population; the latter having been proposed 
and studied previously (Schulz-Streeck et al., 2012; Zhao 
et al., 2012). In this article, we refer to pooling the A/* 
and */B biparental crosses as the GCA model because 
the model captures GCA effects of marker alleles. In 
the plant breeding literature, GCA pertains to the mean 
performance of an inbred when crossed with a series of 
other inbreds. Similarly, the GCA model in this study 
estimates the trait mean of a SNP allele in combination 
with SNP alleles from other inbreds. We refer to pooling 
multiple */* crosses as the same background (SB) model.

In this study, we utilized a subset from 970 biparental 
maize populations to test the usefulness of the GCA model 
compared with the A/B and SB models. We also compared 
these models to PS and to a combined SB + GCA model. The 
data were for actual breeding populations from Monsanto 
from 2001 to 2008 and were therefore representative of the 
pedigree backgrounds, range of genetic diversity, population 
sizes, and extent of field testing that may be encountered in 
a commercial maize breeding program. Our objectives in 
this study were to (i) determine if the GCA model is useful 
for genomewide selection in an A/B cross, and (ii) assess 
the influence of training population size (NGCA), number 
of crosses pooled into the training population (N´), linkage 
disequilibrium (r2), and heritability (h2), on the prediction 
accuracy with the GCA model.

MATERIALS AND METHODS
Test Populations
Phenotypic and marker data for 970 biparental testcross popula-
tions were provided to us by Monsanto. A total of 485 crosses 
were between inbreds from one heterotic group (Group 1) and 
485 crosses were between inbreds from an opposite heterotic 
group (Group 2). Individuals in each of the 970 populations 
were testcrossed to an inbred from the opposite heterotic group. 
From the 970 biparental crosses, we chose 30 A/B testcross 
populations as the test populations for the A/B, GCA, SB, and 
SB + GCA models as well as for PS (Table 1). All pedigrees in 
the dataset were coded by Monsanto to protect confidentiality.

Two of the 30 A/B test populations were BC1 popula-
tions, whereas the remaining 28 were F2 populations. The 
30 A/B test populations had 139 to 186 individuals (Table 1). 
Testcrosses of these individuals were evaluated for grain yield 
(Mg ha–1), moisture (g kg–1), and test weight (kg hL–1) at 4 to 
12 environments (year-location combinations) in the United 
States from 2001 to 2008. Phenotypic data were available as 
the mean of each individual within each location. Phenotypic 
data on some of the individuals were missing from some loca-
tions, making the phenotypic data unbalanced. All phenotypic 
data were at the testcross level, and the same tester was used for 
an A/B test population and for the training population used to 
predict the performance of the A/B cross. The use of the same 
tester eliminated confounding effects due to different testers in 
the performance of each set of A/B, A/*, */B, and */* crosses 
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maximum of 5% for each trait. The h2 was estimated on an ad 
hoc basis as h2 = VG/(VG + VR/e), where VR was the residual 
variance and e was the mean number of environments. Because 
the data were entry means within each location, the genotype 
´ environment interaction variance and within-location error 
variance were confounded in VR. The value of e was estimated 
as the harmonic mean, given the unbalanced nature of the data 
(Holland et al., 2003). The 30 A/B test populations were chosen 
based on having a minimum population size of 50 individuals, 
a minimum of four A/* and */B crosses, and a significant VG.

The parents of the A/B test populations were genotyped 
with 2911 SNP markers, whereas the individuals within each 
A/B cross were genotyped with 49 to 100 SNP markers that 
were polymorphic between A and B. The A/B populations 

for which comparisons were made. However, different testers 
were used across the 30 A/B test populations (Table 1).

Testcross genetic variance (VG) and heritability on an entry-
mean basis (h2) were estimated for each trait in all 970 popu-
lations. Restricted maximum likelihood estimates of variance 
components were obtained with the lme4 package (Bates et al., 
2011) in R statistical software (R Development Core Team, 
2012; Holland et al., 2003). A likelihood ratio test was used to 
determine the significance of the estimates of VG. The p-value 
from the likelihood ratio test was divided by 2.0 to approxi-
mate an F-test of the null hypothesis (Holland et al., 2003). A 
VG estimate with a p-value < 0.05 was considered significant. 
Across the 30 A/B crosses, the percentage of missing data (i.e., 
individual-location combinations) had a mean of only 2% and a 

Table 1. Test and training populations for the A/B biparental cross (* is any inbred that is in the same heterotic group as A and 
B), general combining ability (GCA), and same background (SB) models in maize.

Group‡

Test population GCA model

SB 
model
NSB

‡‡
A/B 

population Tester SA/B
§ N¶ Locations

NM
† Populations

NGCA
††A/B GCA SB

SB +
GCA A/* */B N´

#

1 P1/P2 T1 0.79 152 7 79 (0.62) 79 79 79 23 15 38 5255 5178

1 P3/P4 T1 0.74 164 8 58 (0.43) 47 55 58 11 17 28 4530 4419

1 P4/P5 T1 0.66 177 6 82 (0.49) 78 70 78 17 8 25 3858 3772

1 P6/P7 T1 0.59 183 12 67 (0.44) 66 63 66 17 5 22 3295 3225

1 P3/P8 T1 0.74 181 7 69 (0.51) 62 63 65 11 5 16 2800 2787

1 P1/P9 T2 0.82 174 5 74 (0.63) 68 68 68 7 8 15 1874 1961

1 P5/P8 T1 0.61 148 6 74 (0.36) 64 64 68 9 4 13 1724 1796

1 P9/P10 T2 0.85 152 8 68 (0.58) 63 63 64 9 4 13 1724 1796

1 P9/P2/P9 T2 0.79 159 6 87 (0.60) 67 63 79 8 5 13 2022 1958

1 P11/P12 T1 0.62 182 8 91 (0.45) 53 60 77 2 9 11 1325 1421

1 P13/P14 T3 0.76 178 8 86 (0.64) 82 60 84 7 3 10 1688 1620

1 P2/P15 T3 0.68 160 5 89 (0.57) 68 75 81 5 4 9 1477 1496

1 P16/P13 T3 0.83 178 7 53 (0.59) 47 39 50 7 2 9 1541 1468

1 P17/P18 T1 0.70 185 7 87 (0.50) 54 51 67 2 4 6 793 758

1 P19/P20 T4 0.64 186 5 100 (0.52) 67 39 77 1 3 4 697 615

2 P21/P22 T5 0.82 173 8 69 (0.51) 69 69 69 14 22 36 5168 5647

2 P23/P24 T6 0.84 174 7 49 (0.56) 44 44 46 23 8 31 4199 5241

2 P25/P22 T5 0.77 169 8 72 (0.44) 69 67 69 22 4 26 3960 4109

2 P26/P27 T6 0.76 184 6 66 (0.60) 60 61 65 15 9 24 3550 3913

2 P23/P25 T5 0.73 168 7 68 (0.40) 65 63 66 4 18 22 3188 3615

2 P24/P26 T6 0.74 183 6 66 (0.47) 66 66 66 8 14 22 1928 3255

2 P28/P27 T6 0.74 180 8 49 (0.43) 48 43 49 9 4 13 1829 1984

2 P29/P27 T6 0.75 175 7 69 (0.56) 61 59 69 4 9 13 1309 1930

2 P29/P30 T6 0.72 183 5 98 (0.53) 77 54 63 4 6 10 1771 1363

2 P31/P32 T7 0.74 172 4 65 (0.46) 57 31 56 2 8 10 1596 1692

2 P33/P34 T8 0.81 170 8 63 (0.39) 57 53 58 3 6 9 1042 1495

2 P35/P36 T9 0.76 181 7 85 (0.60) 54 54 64 4 2 6 634 1036

2 P37/P38 T10 0.78 139 4 62 (0.37) 48 22 51 3 2 5 710 645

2 P39/P40/P39 T5 0.78 184 5 83 (0.44) 60 31 52 3 2 5 650 715

2 P41/P42 T11 0.70 183 5 74 (0.50) 58 48 59 2 2 4 650 625
†NM, number of markers used to estimate the performance of the A/B test population, markers for the GCA, SB, and SB + GCA models were removed if the marker was not 
present in at least two training populations. Mean r2 of adjacent SNP markers is listed in parentheses for the A/B population.

‡Heterotic group.
§Simple matching coefficient between parents A and B.
¶N, number of individuals in the A/B test population.
#N´, number of biparental crosses in the training population for the GCA and the SB model.
††NGCA, number of individuals in the training population for the GCA model.
‡‡NSB, number of individuals in the training population for the SB model.
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with lower numbers of markers tended to be those whose par-
ents were more similar based on the 2911 SNP markers. The 
linkage disequilibrium (LD) was calculated as the mean r2 val-
ues between adjacent SNP markers with R statistical software 
(R Development Core Team, 2012). As with the pedigree data, 
the names of the SNP markers were coded by Monsanto to 
protect confidentiality.

As described in further detail below, the different models 
for designing training populations were compared based on two 
criteria: (i) the R in each A/B test population, and (ii) the cor-
relation between marker-predicted performance and observed 
performance (rMP) in each A/B test population.

A/B Model
In the A/B model, the individuals in the test population and the 
individuals in the training population were from the same A/B 
cross. The value of rMP was calculated through a delete-one 
procedure along with cross-validation across environments.

With N individuals in an A/B cross, the performance of 
the first individual was predicted by ridge regression-best linear 
unbiased prediction (RR-BLUP) analysis of the effects of NM 
total markers among the remaining N – 1 individuals. Given 
the low incidence of missing data, arithmetic means of the indi-
viduals across locations were used in RR-BLUP (i.e., with no 
correction for missing data); this procedure facilitated the cross-
validation across environments as described in the next para-
graph. The R package rrBLUP version 4.0 in R (Piepho, 2009; 
Endelman, 2011; R Development Core Team, 2012) was used 
to estimate the marker effects. For each trait, the performance of 
the first individual was predicted as yP = μ + xg, where yP was 
the predicted performance of the individual; μ was the estimated 
mean of the N – 1 individuals used as the training population; 
x was a 1 × NM row vector of genotype indicators; and g was 
a NM ´ 1 vector of RR-BLUP marker effects, estimated from 
the remaining N – 1 individuals, for the SNP alleles from the 
first parent. The elements of x were 1 if the test individual was 
homozygous for the SNP allele from parent A, –1 if the test 
individual was homozygous for the SNP allele from parent B, 
and 0 if the test individual was heterozygous. The delete-one 
analysis was sequentially repeated, with the performance of the 
second individual being predicted from the remaining N – 1 
individuals, the performance of the third individual being pre-
dicted from the remaining N – 1 individuals, and so on. In the 
end, the performance of each of the N individuals was predicted 
from the remaining N – 1 individuals.

The above cross-validation was conducted across environ-
ments to eliminate a bias, present in the A/B model but not in the 
other models, due to the test population and training population 
being evaluated in the same environments. In this procedure, 
RR-BLUP marker effects were estimated from the performance 
of the N – 1 individuals in half of the environments. These 
marker effects were then used to predict the performance of the 
test individual in the remaining half of the environments.

For example, there were 20 combinations of three out of 
six environments. The delete-one RR-BLUP marker effects 
were then obtained for each of these 20 combinations, and the 
marker effects for each combination were used to obtain yP for 
each of the N individuals as described above. For each of the 20 
combinations, rMP was obtained as the correlation between yP 

and the mean performance of each of the N individuals in the 
remaining half of the environments that were not used to cal-
culate marker effects. The mean rMP across all 20 combinations 
was obtained. The same procedure was used for larger numbers 
of environments. When the number of environments (e) was 
an odd number, (e – 1)/2 environments were used to estimate 
marker effects and the observed performance of each of the N 
individuals was based on the remaining environments.

The values of R for high grain yield, low moisture, and 
high test weight were obtained as follows. Again, suppose that 
an A/B population was evaluated in six environments. For each 
of the 20 combinations, the 10% of individuals with the best yP 
values were identified for each trait. The mean observed perfor-
mance of these individuals in the other half of the environments 
was obtained and was denoted as y0.10. The R for each of the 20 
combinations was then estimated as y0.10– μ. The final value of 
R was then obtained as the mean R across the 20 combinations. 
Simulations we have conducted (results not shown) have con-
firmed that this procedure is valid for estimating R, and that the 
estimated value does not correspond to the selection differential.

The variances of rMP and R were obtained across the differ-
ent repeats of the cross-validations across environments. These 
variances were then used to calculate LSD values (p = 0.05) for 
the mean rMP and mean R.

General Combining Ability Model
The GCA model is based on the premise that effects of the two 
alleles at a SNP locus in an A/B cross can be sufficiently modeled 
as (i) the mean of effects (denoted by mA_) of a SNP marker in par-
ent A when A is crossed with multiple inbreds, and (ii) the mean 
of effects (denoted by mB_) of a SNP marker in parent B when 
B is crossed with multiple inbreds. Suppose that mA/B is the test-
cross effect of the SNP allele from parent A within the A/B cross. 
Likewise, mB/A is the testcross effect of the SNP allele from parent 
B within the A/B cross. The marker effects are mA/B = mA_ + 
residual and mB/A = mB_ + residual. The GCA model ignores the 
residuals, which are specific to the A/B combination and which 
cannot be estimated unless A/B itself is evaluated.

In the GCA model, the number of A/* and */B crosses that 
were pooled into a training population (N´) for each A/B test 
population ranged from 4 to 38 (Table 1). The total size of the 
pooled training population (NGCA) ranged from 634 to 5255 indi-
viduals, all with the same tester as the A/B population (Table 1). 
The number of polymorphic SNP markers used to genotype the 
A/* and */B crosses ranged from 38 to 116 and had a mean of 74.

Because different sets of SNP markers were used in different 
populations, each A/* and */B cross was analyzed separately to 
obtain RR-BLUP marker effects within each cross. For a given 
trait, the performance of all N individuals in the A/B test popu-
lation was predicted as y =  μ1 + Xm, where y was an N × 
1 vector of predicted performance; μ was the estimated over-
all mean; 1 was an N × 1 vector with elements equal to 1; X 
was an N × NM matrix of genotype indicators with elements 
of 1, –1, and 0 (same as for x); and m was an NM ´ 1 vector 
of RR-BLUP marker effects averaged across the A/* and */B 
crosses. All markers in each A/* and */B cross were used in RR-
BLUP analysis within the cross. However, the NM for obtaining 
y referred to the markers in the A/B test population. Markers in 
the A/B test population were removed if they were not present in 
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Phenotypic Selection
In PS, the mean performance of an A/B individual in half of 
the environments was considered as the predictor of the per-
formance of the same individual in the remaining half of the 
environments. Procedures for calculating the prediction accu-
racy of PS and R were the same as those used for rMP and R in 
the GCA, SB, and SB + GCA models. For convenience, the 
prediction accuracy with PS was also denoted as rMP in Tables 2 
through 5, even though the prediction of performance with PS 
did not involve marker effects.

Genetic Similarity Thresholds
We investigated the effect in the GCA model of imposing a 
minimum similarity between the * parents and the A and B 
parents. Genetic similarity was calculated (i) between parent 
A and the * inbred from the */B cross (SA*), and (ii) between 
parent B and the * inbred from the A/* cross (SB*). The genetic 
similarity was calculated as the simple matching coefficient 
(Sokal and Michener, 1958) across 2911 SNP markers that were 
used to screen all the parents.

The A/* and */B crosses in the GCA model were then 
restricted to those in which the values of SA* and SB* both 
exceeded threshold values of 0.60, 0.70, or 0.80. Values of rMP 
and R were calculated as described for the GCA model.

RESULTS AND DISCUSSION
Models for Predicting Performance  
within an A/B Cross
Based on the mean R and mean rMP across the 30 A/B 
test populations (Table 2), the overall ranking of the six 
models we studied was as follows: PS > A/B > GCA > 
GCAIBD > GCA + SB > SB. The overall ranking of the 
models was the same for the three traits we studied (grain 
yield, moisture, and test weight). However, the ranking of 
the six methods was not always the same across the 30 test 
populations (Tables 3–5).

The predictions were expected to be most accurate 
when they were made from within the population itself. 
Predictions with PS and the A/B model were based on 
the performance of the A/B test population itself, and the 
superiority of PS and of the A/B model was, therefore, 
consistent with expectations. Phenotypic selection had the 
highest mean R for grain yield (0.25 Mg ha–1), moisture 
(–7 g kg–1), and test weight (0.56 kg hL–1) (Table 2). Phe-
notypic selection also had the highest mean rMP for all 
three traits (0.24 for grain yield, 0.44 for moisture, and 
0.34 for test weight). Although the differences between 
the two methods were mostly nonsignificant (p = 0.05), 
the mean R and rMP values were consistently lower with 
the A/B model than with PS. Across the three traits, mean 
R values with the A/B model were 72 to 86% of the R 
values with PS. As expected, the mean R and rMP values 
within a trait were highly correlated across the six models 
we studied (correlations of 0.95 for grain yield, 0.98 for 
moisture, and 0.99 for test weight).

at least two A/* or */B crosses. The separate RR-BLUP analyses 
for each A/* and */B cross inherently accounted for population 
structure, with the fitted values of μ differing among the A/* and 
*/B crosses and thereby reflecting population structure.

We studied two versions of the GCA model that differed in 
how m was calculated. In the GCA model, marker effects were 
estimated as the unweighted mean across all A/* and */B crosses 
in which a particular marker was polymorphic. Suppose the train-
ing population was obtained by pooling 10 A/* crosses and 12 
*/B crosses and that all 22 crosses were polymorphic for SNP1, 
which was also polymorphic in A/B. Further suppose that parent 
A had the T allele and parent B had the C allele at the SNP1 locus. 
With biallelic SNPs, this means that the * parents in the 10 A/* 
crosses carried the C allele, and the * parents in the 12 */B crosses 
carried the T allele. In the GCA model, the effect of the T marker 
allele at SNP1 was the unweighted mean of the estimated marker 
effects of the T allele in all 22 crosses. Likewise, the effect of the C 
marker allele of SNP1 was the unweighted mean of the estimated 
marker effects of the C allele in all 22 crosses.

Not all SNP markers in the A/B cross were polymorphic 
in all of the A/* and */B crosses. With the previous example, 
suppose that SNP2 was not polymorphic in the last two */B 
crosses. In this situation, the mean marker effects at SNP1 were 
obtained from all 10 A/* and 12 */B crosses, whereas the mean 
marker effects at SNP2 were obtained from all 10 A/* crosses 
and the first 10 */B crosses.

In the GCAIBD model, the effect of the T marker allele 
at SNP1 (found in parent A) was the unweighted mean of the 
estimated marker effects of the T allele in the 10 A/* crosses 
only. Likewise, the effect of the C marker allele of SNP1 (found 
in parent B) was the unweighted mean of the estimated marker 
effects of the C allele in the 12 */B crosses only. The GCAIBD 
model, therefore, guaranteed that estimates of mean marker 
effects were obtained only from those crosses where identity by 
descent (IBD) is guaranteed between a marker allele in the A/B 
cross and in the training population.

For the GCA model and GCAIBD model, the values of rMP and 
R were calculated in the same way as for the A/B model. Cross-
validation across environments was done for the A/B test popula-
tion according to the same procedure for splitting environments 
used in the A/B model. However, data from all environments 
were always used in estimating marker effects within the A/* and 
*/B populations, which were evaluated in sets of environments 
that were different from those used to evaluate the A/B cross.

Same Background Model
In the SB model, the number of randomly selected */* crosses 
that were pooled into a training population for each A/B test 
population was equal to that for the GCA model. The total size 
of the pooled training population (NSB) in the SB model was 
kept generally similar to that in the GCA model and ranged 
from 615 to 5647 individuals. The number of polymorphic 
SNP markers used to genotyped the */* crosses ranged from 59 
to 84 and had a mean of 73.

In the SB + GCA model, the training population for an A/B 
cross comprised all the A/* and */B crosses from the GCA model 
and all the */* crosses from the SB model. The procedures for 
calculating R and rMP with the SB model and SB + GCA model 
were the same as those for the GCA model and GCAIBD model.
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The values of the prediction accuracy with PS indi-
cated that the correlation between the testing environ-
ments was low to moderate. Quantitative traits are 

strongly influenced by genotype ´ environment inter-
action, which leads to the genotypes reacting differently 
in different environments (Haldane, 1946; Cooper and 

Table 2. Mean and range (in parentheses) of response to selection (R) and prediction accuracy (rMP) across 30 test populations 
in maize. The R and rMP values were for phenotypic selection (PS) and for the A/B, general combining ability (GCA), GCA-
identity by descent (GCAIBD), same background (SB), and SB + GCA models for genomewide selection.

Method

Grain yield (h2 = 0.38)† Moisture (h2 = 0.66) Test weight (h2 = 0.53)

R rMP R rMP R rMP

Mg ha–1 g kg–1 kg hL–1

PS 0.25a‡ (0.03, 0.58) 0.24a (0.05, 0.42) –7a (–15, –2) 0.44a (0.21, 0.67) 0.56a (0.04, 1.06) 0.34a (0.07, 0.62)
A/B 0.18ab (–0.15, 0.57) 0.14b (–0.06, 0.39) –6a (–16, 1) 0.38a (0.05, 0.67) 0.44ab (0.06, 0.85) 0.29ab (0.06, 0.60)
GCA 0.19ab (–0.05, 0.52) 0.14b (0.01, 0.40) –6a (–13, 0) 0.32b (–0.02, 0.53) 0.38bc (–0.06, 0.87) 0.24bc (–0.05, 0.48)
GCAIBD 0.15bc (–0.10, 0.54) 0.12b (–0.06, 0.31) –4b (–9, 1) 0.26bc (–0.02, 0.51) 0.24d (–0.30, 0.74) 0.18cd (–0.07, 0.39)
SB 0.07c (–0.25, 0.50) 0.06c (–0.13, 0.30) –1c (–4, 4) 0.11d (–0.07, 0.29) 0.11e (–0.31, 0.75) 0.07e (–0.07, 0.35)
SB + GCA 0.17b (–0.11, 0.52) 0.12b (–0.05, 0.44) –4b (–8, 0) 0.25c (–0.02, 0.49) 0.29cd (–0.31, 0.91) 0.17d (–0.23, 0.36)
LSD0.05 0.079 0.056 1.49 0.063 0.121 0.065

†Mean heritability (h2) on an entry-mean basis.
‡Within a column, estimates with a common letter were not significantly different (p = 0.05).

Table 3. Response to selection (R) and prediction accuracy (rMP) for grain yield with phenotypic selection (PS) and with the 
A/B, general combining ability (GCA), GCA-identity by descent (GCAIBD), same background (SB), and SB + GCA models for 
genomewide selection in maize.

Test  
population h2†

R, Mg ha–1 rMP

PS A/B GCA GCAIBD SB
SB + 
GCA PS A/B GCA GCAIBD SB

SB + 
GCA

P1/P2 0.62 0.53 0.48 0.52 0.54 0.50 0.52 0.42 0.27 0.30 0.29 0.15 0.14

P3/P4 0.31 0.29 0.10 0.15 0.20 0.22 0.21 0.19 0.05 0.09 0.14 0.11 0.13

P4/P5 0.43 0.33 0.18 0.26 0.20 0.29 0.36 0.28 0.22 0.25 0.20 0.10 0.14

P6/P7 0.50 0.27 0.30 0.11 0.12 0.04 0.11 0.28 0.26 0.10 0.04 0.03 0.09

P3/P8 0.43 0.17 0.11 0.27 –0.06 –0.25 0.08 0.21 0.09 0.16 –0.02 –0.02 0.16

P1/P9 0.40 0.10 0.28 0.36 0.31 0.15 0.41 0.26 0.34 0.40 0.31 0.24 0.44

P5/P8 0.34 0.41 0.45 0.40 0.36 0.02 –0.08 0.26 0.30 0.17 0.26 –0.04 –0.01

P9/P10 0.43 0.27 0.08 –0.04 0.03 0.12 0.34 0.25 0.23 0.01 0.00NS‡ 0.30 0.23

P9/P2/P9 0.43 0.58 0.57 0.42 0.33 0.29 0.48 0.28 0.24 0.13 0.13 0.14 0.15

P11/P12 0.40 0.19 0.17 0.09 0.06 0.19 0.19 0.26 0.15 0.08 0.00NS –0.06 0.17

P13/P14 0.52 0.39 0.39 –0.02 0.04 –0.06 –0.04 0.36 0.39 0.08 –0.02 0.12 0.12

P2/P15 0.31 0.20 0.24 0.04 –0.10 0.12 0.01NS 0.17 0.23 0.20 0.12 0.13 0.21

P16/P13 0.40 0.28 0.25 0.16 0.08 0.00NS 0.24 0.20 0.30 0.26 0.22 0.17 0.25

P17/P18 0.47 0.31 0.26 –0.03 0.03 0.13 0.20 0.29 0.20 0.18 0.08 0.08 0.10

P19/P20 0.22 0.09 0.24 0.35 0.09 0.00NS 0.21 0.16 0.15 0.16 0.10 0.04 0.19

P21/P22 0.47 0.33 0.28 0.37 0.19 0.28 0.34 0.31 0.16 0.08 0.19 0.04 0.09

P23/P24 0.20 0.09 0.04 0.38 0.12 0.13 0.30 0.07 0.02 0.02 0.05 0.00NS 0.06

P25/P22 0.43 0.26 0.16 0.32 0.06 0.17 0.19 0.28 0.16 0.22 0.21 0.10 0.19

P26/P27 0.24 0.13 0.17 0.07 0.09 0.03 0.12 0.12 0.15 0.22 0.18 0.12 0.27

P23/P25 0.57 0.33 0.16 0.23 0.42 0.04 0.15 0.38 0.22 0.14 0.23 0.07 0.09

P24/P26 0.47 0.35 0.06 0.05 0.05 –0.05 0.02 0.29 0.05 0.06 –0.06 0.02 0.04

P28/P27 0.35 0.20 –0.05 0.11 0.27 0.13 0.15 0.22 0.12 0.13 0.21 0.08 0.10

P29/P27 0.25 0.15 0.02 0.12 0.06 0.03 0.08 0.11 0.03 0.08 0.10 0.01 0.06

P29/P30 0.23 0.18 0.05 0.22 0.16 0.04 0.12 0.15 0.07 0.15 0.13 0.02 0.01NS

P31/P32 0.23 0.03 0.04 0.25 0.17 0.06 –0.01NS 0.05 –0.01NS 0.10 0.06 0.00NS 0.04

P33/P34 0.45 0.19 –0.11 –0.05 0.12 –0.08 –0.11 0.33 0.09 0.04 0.02 0.06 0.02

P35/P36 0.27 0.16 –0.15 0.00NS 0.02 –0.08 –0.01NS 0.17 –0.60 0.04 0.06 –0.09 –0.01NS

P37/P38 0.29 0.25 0.43 0.06 0.11 –0.17 0.50 0.27 0.24 0.07 0.03 0.01 0.08

P39/P40/P39 0.46 0.13 0.02 0.20 0.09 –0.02 0.03 0.18 0.06 0.11 0.09 –0.13 –0.05

P41/P42 0.24 0.30 0.04 0.28 0.29 –0.07 –0.01NS 0.27 0.12 0.18 0.15 0.00NS 0.01NS
†Heritability (h2) on an entry-mean basis.
‡NS, not significantly different from zero (p = 0.05). All other estimates of R and rMP were significant.
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Delacy, 1994). While genotype by environment interac-
tion variance could not be estimated with the data in this 
study, genotype ´ environment interaction in maize is 
usually strong (Ouyang et al., 1995) and it necessitates the 
testing of maize hybrids across multiple environments.

It is advantageous to predict the performance of indi-
viduals within an A/B cross before phenotyping the cross 
itself, which is required in PS and in the A/B model. In 
the GCA model, the training population was constructed 
by pooling previously phenotyped crosses with A and B as 
one of the parents. The mean R with the GCA model was 
0.19 Mg ha–1 for grain yield, –6 g kg–1 for moisture, and 
0.38 kg hL–1 for test weight (Table 2). The mean rMP was 
0.14 for grain yield, 0.32 for moisture, and 0.24 for test 
weight (Table 2). Across the three traits, mean R values 
with the GCA model were 68 to 76% of the R values with 
PS. Compared with the A/B model, the GCA model had 
statistically equal or slightly lower mean R and rMP.

One important advantage of PS over genomewide 
selection was that responses to selection were always in the 
favorable direction with PS. In contrast, the five genome-
wide selection models had instances of responses in the 
unfavorable direction. For grain yield, all of the R values 
were all positive for PS, but three populations had a nega-
tive R with A/B model and four populations had a nega-
tive R with the GCA model (Table 3). The unfavorable 
gains may have been due to associations between SNPs 
and QTL that were not conserved among populations 
(Liu et al., 2011; Zhao et al., 2012).

The mean R and mean rMP values were lower with 
the GCAIBD model than with the GCA model for all 
three traits (Table 2). The small but consistent reductions 
in R and rMP with the GCAIBD model may have occurred 
because the marker effects was estimated from fewer 
crosses in the GCAIBD model than in the GCA model. For 
example, in population P24/P26, eight A/* and 14 */B 

Table 4. Response to selection (R) and prediction accuracy (rMP) for moisture with phenotypic selection (PS) and with the 
A/B, general combining ability (GCA), GCA-identity by descent (GCAIBD), same background (SB), and SB + GCA models for 
genomewide selection in maize.

Test 
population h2†

R, g kg–1 rMP

PS A/B GCA GCAIBD SB
SB + 
GCA PS A/B GCA GCAIBD SB

SB + 
GCA

P1/P2 0.58 –6 –5 –5 –5 –2 –4 0.35 0.37 0.46 0.46 0.29 0.29

P3/P4 0.75 –11 –8 –7 –7 –3 –5 0.58 0.46 0.42 0.38 0.19 0.37

P4/P5 0.76 –6 –5 –4 –4 –3 –4 0.51 0.48 0.29 0.31 –0.01 0.38

P6/P7 0.85 –14 –12 –9 –8 –3 –6 0.67 0.37 0.46 0.40 0.11 0.42

P3/P8 0.73 –6 –6 –7 –6 –2 –5 0.46 0.41 0.38 0.36 0.11 0.36

P1/P9 0.55 –2 –3 –3 –4 –2 –4 0.26 0.26 0.30 0.25 0.17 0.34

P5/P8 0.77 –2 –3 –1 –1 1 –4 0.25 0.36 0.18 0.15 0.06 0.26

P9/P10 0.56 –15 –11 –13 –6 2 –2 0.61 0.47 0.28 0.16 0.06 0.17

P9/P2/P9 0.75 –4 –4 –3 –2 –1 –4 0.43 0.39 0.35 0.26 0.21 0.38

P11/P12 0.84 –10 –9 –5 –5 –2 –4 0.66 0.57 0.25 0.19 0.03 0.07

P13/P14 0.68 –2 –2 –2 –2 –2 –4 0.38 0.36 0.23 0.21 0.20 0.19

P2/P15 0.61 –3 –4 –4 –4 –3 –3 0.30 0.31 0.32 0.32 0.22 0.29

P16/P13 0.76 –8 –10 –8 –8 –1 –5 0.56 0.58 0.53 0.48 0.14 0.49

P17/P18 0.81 –14 –16 –6 –7 –4 –6 0.50 0.67 0.30 0.26 0.15 0.16

P19/P20 0.56 –6 –3 –3 1 1 –2 0.39 0.22 0.16 –0.01NS 0.00NS 0.11

P21/P22 0.43 –5 –7 –7 –5 –4 –7 0.29 0.38 0.36 0.35 0.24 0.29

P23/P24 0.62 –7 –5 –4 –4 –1 –2 0.40 0.34 0.29 0.23 0.21 0.30

P25/P22 0.64 –9 –6 –7 –5 –3 –4 0.46 0.36 0.28 0.25 0.12 0.19

P26/P27 0.74 –8 –6 –6 –4 –2 –4 0.53 0.48 0.42 0.32 0.17 0.19

P23/P25 0.62 –6 –5 –7 –5 –1 –4 0.48 0.35 0.41 0.39 0.17 0.33

P24/P26 0.71 –7 –6 –7 –1 0NS –6 0.50 0.38 0.40 –0.02 0.04 0.31

P28/P27 0.81 –13 –11 –8 –9 –4 –8 0.62 0.56 0.43 0.51 0.13 0.29

P29/P27 0.75 –6 –5 –5 –4 –3 –4 0.52 0.49 0.49 0.38 0.20 0.41

P29/P30 0.63 –5 –4 –4 –4 1 –2 0.45 0.44 0.36 0.34 0.03 0.30

P31/P32 0.42 –6 –6 –5 –5 0NS –3 0.40 0.26 0.24 0.20 0.01NS 0.21

P33/P34 0.51 –9 –4 –6 –5 –1 –5 0.35 0.12 0.20 0.15 0.04 0.14

P35/P36 0.59 –3 1 0NS 0NS 1 0NS 0.29 0.05 –0.02 0.05 –0.01 –0.02

P37/P38 0.38 –7 –6 –6 –3 4 –2 0.40 0.24 0.24 0.15 –0.07 0.22

P39/P40/P39 0.61 –2 –2 –2 0NS 1 –1 0.21 0.24 0.15 –0.01 0.04 0.03

P41/P42 0.73 –10 –9 –11 –8 –2 –3 0.53 0.55 0.40 0.33 0.09 0.09
†Heritability (h2) on an entry-mean basis.
‡NS, not significantly different from zero (p = 0.05). All other estimates of R and rMP were significant.
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crosses were pooled into the training population. Marker 
effects in the GCA model were, therefore, estimated from 
22 crosses, whereas marker effects in the GCAIDB model 
were estimated from eight crosses (marker effects for P24) 
and 14 crosses (marker effects for P26).

In the GCA model, increasing the level of genetic 
similarity between the * parent and the A/B cross did not 
improve the predictions. We found no significant differ-
ence (p = 0.05) in R and rMP when the training populations 
only included A/* and */B crosses for which the values of 
SA* and SB* both exceeded threshold values of 0.60, 0.70 or 
0.80. The influence of genetic similarity was confounded 
with changes in the size of the training population, because 
higher thresholds for genetic similarity reduced the num-
ber of crosses that could be included in the training popu-
lation. However, the R and rMP were similar even as the 
population size greatly decreased due to removing popu-
lations below the genetic similarity threshold. This result 

suggested that the contributions of the A and B parents 
themselves (in the A/* and */B crosses) may be providing 
most of the information for predictions in the GCA model. 
Previous studies have shown that rMP decreased when the 
relationship between the training and test population was 
weak, especially when the training population was small 
(Habier et al., 2010; Asoro et al., 2011; Clark et al., 2012). 
However, the use of crosses that have A and B as one of the 
parents inherently leads to a strong relationship between 
the training and test population, to the extent that previous 
results that focus on weaker relatedness do not apply.

The SB model was ineffective even though (i) the 
crosses pooled into the training population were from the 
same heterotic group as the A/B cross, (ii) the number 
of crosses pooled into a training population was equal 
between the SB and GCA models, and (iii) the size of the 
training population was roughly the same between the 
SB and GCA models (Table 1). The mean rMP across the 

Table 5. Response to selection (R) and prediction accuracy (rMP) for test weight with phenotypic selection (PS) and with the 
A/B, general combining ability (GCA), GCA-identity by descent (GCAIBD), same background (SB), and SB + GCA models for 
genomewide selection in maize.

Test 
population h2†

R, kg hL–1 rMP

PS A/B GCA GCAIBD SB
SB + 
GCA PS A/B GCA GCAIBD SB

SB + 
GCA

P1/P2 0.32 0.39 0.25 0.32 0.37 0.45 0.40 0.22 0.22 0.37 0.38 0.35 0.33

P3/P4 0.52 0.63 0.34 0.19 0.10 –0.02 0.12 0.32 0.25 0.12 0.10 –0.01NS‡ 0.06

P4/P5 0.31 0.40 0.14 0.47 0.20 0.13 0.67 0.16 0.09 0.22 0.16 –0.07 0.12

P6/P7 0.83 1.06 0.75 0.50 0.74 0.04 0.38 0.62 0.11 0.33 0.30 0.03 0.28

P3/P8 0.67 0.72 0.63 0.11 0.09 0.07 0.11 0.44 0.45 0.31 0.29 0.10 0.21

P1/P9 0.47 0.46 0.16 0.26 0.23 0.29 0.31 0.24 0.16 0.24 0.14 0.07 0.18

P5/P8 0.47 0.58 0.37 0.63 0.42 –0.26 0.21 0.32 0.28 0.28 0.21 –0.02 0.26

P9/P10 0.52 0.73 0.39 0.69 0.14 –0.15 0.46 0.35 0.29 0.36 0.23 0.00NS 0.21

P9/P2/P9 0.46 0.39 0.47 0.24 0.41 –0.22 0.20 0.24 0.19 0.19 0.17 –0.01 0.17

P11/P12 0.52 0.42 0.29 0.23 0.13 0.20 0.21 0.28 0.26 0.12 0.11 0.08 0.16

P13/P14 0.62 0.25 0.32 0.27 0.22 0.20 0.20 0.32 0.27 0.20 0.22 0.02 0.13

P2/P15 0.35 0.27 0.09 0.14 0.25 0.05 0.13 0.10 0.06 0.16 0.18 0.12 0.15

P16/P13 0.71 0.67 0.78 0.71 0.38 0.08 0.50 0.48 0.60 0.43 0.35 –0.03 0.32

P17/P18 0.71 0.62 0.83 –0.06 –0.07 –0.31 –0.31 0.50 0.51 –0.05 0.03 –0.05 –0.07

P19/P20 0.66 0.79 0.50 0.19 0.11 0.01 0.20 0.38 0.18 0.04 0.09 0.05 0.07

P21/P22 0.54 0.68 0.46 0.87 0.27 –0.06 0.91 0.33 0.33 0.33 0.25 0.05 0.33

P23/P24 0.45 0.56 0.30 0.15 0.14 0.04 0.19 0.31 0.23 0.19 0.07 0.11 0.15

P25/P22 0.61 0.57 0.31 0.34 0.49 0.01NS 0.37 0.42 0.25 0.27 0.27 0.10 0.22

P26/P27 0.69 0.73 0.85 0.76 0.49 0.75 0.80 0.51 0.55 0.48 0.39 0.16 0.18

P23/P25 0.51 0.75 0.68 0.48 0.64 0.56 0.45 0.35 0.36 0.24 0.30 0.12 0.22

P24/P26 0.72 0.85 0.69 0.68 –0.21 0.45 0.07 0.52 0.49 0.42 –0.06 0.30 –0.23

P28/P27 0.46 0.43 0.17 0.17 0.12 0.01NS 0.02 0.27 0.18 0.13 –0.07 –0.01 0.02

P29/P27 0.60 0.55 0.51 0.49 0.28 0.28 0.44 0.41 0.43 0.41 0.28 0.23 0.34

P29/P30 0.28 0.04 0.06 0.33 0.19 –0.10 0.27 0.07 0.14 0.31 0.28 0.00NS 0.25

P31/P32 0.45 0.40 0.68 0.67 0.09 –0.29 0.46 0.27 0.32 0.28 0.13 –0.03 0.24

P33/P34 0.59 0.81 0.38 0.29 0.50 0.59 0.25 0.43 0.32 0.22 0.16 0.11 0.20

P35/P36 0.27 0.36 0.10 –0.02 –0.30 0.28 0.15 0.17 0.06 –0.02 0.01 0.07 0.05

P37/P38 0.38 0.41 0.73 0.73 0.39 0.00NS 0.12 0.49 0.55 0.39 0.28 0.17 0.36

P39/P40/P39 0.62 0.42 0.34 0.13 0.25 0.19 0.34 0.17 0.25 0.08 0.18 0.09 0.20

P41/P42 0.70 0.73 0.65 0.41 0.19 0.18 0.20 0.55 0.37 0.17 0.12 0.01NS 0.04
†Heritability (h2) on an entry-mean basis.
‡NS, not significantly different from zero (p = 0.05). All other estimates of R and rMP were significant.
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three traits was only 0.06 to 0.11 with the SB model, and 
the R with SB model was only 15 to 28% of the R with 
PS (Table 2). These results were inconsistent with several 
previous studies that showed combining multiple related 
populations (Schulz-Streeck et al., 2012; Zhao et al., 
2012; Windhausen et al., 2012) or multiple populations 
from opposite heterotic groups (Technow et al., 2013) 
improved the prediction accuracy over the A/B model, 
but they were consistent with one previous study that 
showed that including populations with the same genetic 
background can cause a lower or even negative predic-
tion accuracy (Riedelsheimer et al., 2013). This result 
may have been due to opposite linkage phases between 
the QTLs in the training and test populations (Lorenz et 
al., 2012; Riedelsheimer et al., 2013).

Increasing the size of the training population has been 
previously found to be an important factor in increasing 
the prediction accuracy (Heffner et al., 2011a). Compared 
with the GCA model, the SB + GCA model had dou-
ble the number of crosses in the training population and 
roughly double the size of the training population. How-
ever, the GCA model was as effective or more effective 
than the SB + GCA model. While the differences were 
often nonsignificant, the mean R and rMP values were 
consistently lower with the SB + GCA model than with 
the GCA model (Table 2). Increasing the size of the train-
ing population with random populations is, therefore, 
less important than including A/* and */B crosses in the 
training population for the A/B cross. Similar results were 
found by Riedelsheimer et al. (2013).

Influence of Heritability, Linkage 
Disequilibrium, Size of the Training 
Population, and Number of Markers  
on the GCA Model
The h2 values for grain yield, moisture, and test weight 
varied widely among the 30 test populations (Table 1). 
While the mean h2 was 0.38 for grain yield, 0.66 for mois-
ture, and 0.53 for test weight, the h2 within a test popula-
tion ranged from 0.20 to 0.62 for grain yield (Table 3), 
0.38 to 0.85 for moisture (Table 4), and 0.27 to 0.83 for 
test weight (Table 5). With the GCA model, the correla-
tion between h2 and rMP was positive for each trait but was 
significant only for moisture (Table 6).

The 30 A/B test populations differed widely in the 
number of individuals in the training population for the 
GCA model (NGCA). However, the NGCA was always large, 
ranging from 634 to 5255 (Table 1). With the GCA model, 
the correlations between NGCA and rMP were positive but 
significant only for moisture (Table 6). Our results agree 
with previous studies that indicated that an increase in 
N results in an increase in rMP (Lorenzana and Bernardo, 
2009; Asoro et al., 2011; Heffner et al., 2011a, 2011b; Guo 
et al., 2012; Lorenz et al., 2012).

The expected prediction accuracy (rMG) is a function of 
2

GCAN h  instead of NGCA and h2 individually (Daetwyler 
et al., 2010). Because rMP is equal to rMPh, rMP is a function 
of 2

GCAh N . Our empirical results were consistent with 
this theoretical result from Daetwyler et al. (2010), with 
the correlation between rMP and 2

GCAh N  for the GCA 
model being significant for moisture and test weight but 
not for grain yield (Table 6). These results generally agree 
with previous research that found that within the same 
trait, the product of Nh2 is more important than N and h2 
evaluated individually (Combs and Bernardo, 2013b).

We have previously found that the Daetwyler et al. 
(2010) equation for prediction accuracy can be modified 
by incorporating information on LD (r2) between adja-
cent markers (Lian et al., 2013). The correlation between 
rMP and 2 2

GCAh r N  was 0.36 for grain yield, 0.58 for mois-
ture, and 0.48 for test weight (Table 6). The higher cor-
relations of rMP with 2 2

GCAh r N  than with 2
GCAh N  indi-

cated that, when the genome is unsaturated with mark-
ers, mean r2 values contribute to the expected prediction 
accuracy (Lian et al., 2013).

In addition to the large variability in the number of 
individuals in the training population, there was also a 
large variability in the number of crosses that comprised 
the training population for the GCA model (N´). The 
correlation between N´ and rMP was significant for mois-
ture and test weight, but not for grain yield (Table 6). The 
training populations with the most A/* and */B crosses 
tended to have the largest R values. For example, in the 
P21/P22 population, 38 A/* and */B crosses were used in 
the training population, and R was high at 0.37 Mg ha–1 
for grain yield (Table 3), –7 g kg–1 for moisture (Table 4), 
and 0.87 kg hL–1 for test weight (Table 5).

As with 2
GCAh N , the correlations between rMP and 

2h N´  were higher than the correlations with N´ and h2 
evaluated individually (Table 6). These correlations were 

Table 6. Correlation between prediction accuracy (rMP) versus 
the number of individuals in the training population general 
combining ability (GCA) model (NGCA), number of biparental 
crosses in the training population GCA model (N´), heritability 
on an entry-mean basis (h2), linkage disequilibrium (r2) 
between adjacent SNP markers, and number of markers (NM).

Factor Grain yield Moisture Test weight

NGCA 0.18 0.43* 0.33

N´ 0.13 0.42* 0.38*

h2 0.16 0.39* 0.14

r2 0.29 0.35 0.15
2

GCAh N 0.26 0.57* 0.43*
2 2

GCAh r N 0.36* 0.58* 0.48*

´
2h N 0.22 0.55* 0.46*

´
2 2h r N 0.31 0.57* 0.52*

NM 0.35 0.01 0.18

*Significant (p = 0.05) based on a Fisher z-transformation. All other correlation 
coefficients were nonsignificant.
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increased further by incorporating LD. The correlations 
between rMP and 2 2h r N´  were 0.31 for grain yield, 0.57 
for moisture, and 0.52 for test weight. Further studies are 
needed to evaluate the effect of increasing N´ while keep-
ing NGCA constant, or of increasing NGCA while keeping 
NX constant. On the other hand, knowledge of the inde-
pendent effects of NGCA and N´ would be of little practical 
value because, in practice, NGCA and N´ would tend to be 
highly correlated.

The correlation between the number of markers (NM) 
and rMP was not significant for any of the traits (Table 6). 
Previous studies have indicated that rMP increases as the 
NM increases, but rMP plateaus once the genome is covered 
with markers (Lorenzana and Bernardo, 2009; Asoro et al., 
2011; Heffner et al., 2011a; 2011b; Guo et al., 2012; Combs 
and Bernardo, 2013b). Large chromosomal segments 
are passed intact from parents to progeny in a biparental 
cross, to the extent that markers spaced 10 to 15 cM are 
largely sufficient (R. Bernardo, unpublished data, 2013) for 
genomewide selection within a biparental cross. Finding 
many polymorphic markers can also be difficult in crosses 
between related elite inbreds, such as those in this study. 
The mean r2 between adjacent markers across the 30 popu-
lations was 0.51 with a range of 0.36 to 0.64 (Table 1), and 
the mean r2 among all 970 populations (0.46) was likewise 
high. The high r2 values indicated that although marker 
coverage is low there was substantial LD for genomewide 
selection. A previous study in maize found that genome-
wide selection was still effective when the r2 was as low as 
0.26 to 0.35 (Massman et al., 2013). Nevertheless, increas-
ing the number of markers may help increase the R and 
rMP for the GCA, A/B, SB, and SB + GCA models.

Overall, 2 2
GCAh r N  and 2 2h r N´  were the two criteria 

with the highest correlations with rMP and for which the 
correlations were significant across all three traits, except 
for 2 2h r N´

  for grain yield (Table 6). These two criteria 
should therefore be the ones used for designing genome-
wide selection programs with the GCA model. When 
prediction accuracy is expressed as rMG instead of rMP, the 
corresponding criteria would be 2 2

GCAr h N  and 2 2r h N´
.

Implications in Inbred Development
Our results show that selection within an A/B cross is 
most effective when selection decisions—made from 
either field data (PS) or marker-based predictions (A/B 
model)—are based on the performance of the A/B cross 
itself. But PS and the A/B model are highly time consum-
ing and expensive because the A/B population itself needs 
to be phenotyped. Time and cost are particularly limit-
ing in inbred development that does not involve recurrent 
selection; in the latter, the time and cost in phenotyp-
ing can be justified by the increase in the gain per unit 
time when multiple cycles of genomewide selection are 

performed in a year-round nursery or greenhouse (Mass-
man et al., 2012; Combs and Bernardo, 2013a).

The GCA model led to the highest R and rMP among 
the models that eliminate the need to phenotype the A/B 
test population itself. The GCA model relies on informa-
tion from previously phenotyped and genotyped crosses 
with inbreds A and B as one of the parents and is condu-
cive in advanced breeding programs that use elite inbreds 
as the parents of new breeding crosses. In the context of 
inbred development, genomewide selection with the GCA 
model seems most useful during the stages of the breed-
ing program when gains from PS are zero or are low. In 
particular, the evaluation of individual F2 plants per se has 
a low genetic correlation with the testcross performance 
of the F2 plant or of an inbred derived from the F2 plant 
when heterosis is substantial and when heritability is low 
(Smith, 1986; Bernardo, 1991; Mihaljevic et al., 2004). 
Current gains for hybrid grain yield from any mass selec-
tion for grain yield among individual F2 plants are, there-
fore, probably zero or close to zero. Our results indicated 
that, on average, genomewide selection with the GCA 
model among F2 plants in an A/B cross would lead to 
single-trait gains of 0.19 Mg ha–1 (or 3 bushels per acre) for 
grain yield, –6 g kg–1 (or –0.6%) for moisture, and 0.38 kg 
hL–1 (or 0.30 lb per bushel) for test weight (Table 2). These 
gains were 68 to 76% of the corresponding gains with PS 
based on testcross performance in replicated experiments 
and could be achieved at a fraction of the cost of PS.
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