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RESEARCH

Since the 1980s, molecular markers have largely been consid-
ered as an add-on to cultivar development. Marker applications 

for quantitative traits have been investigated in the context of the 
question: “Given the current methods for breeding crops, how can 
molecular markers enhance breeding progress?” Viewing mark-
ers primarily as an aid to selection was a natural consequence of 
the high cost of genotyping for molecular markers. In the 1990s, 
for example, the cost of genotyping one sample for one restriction 
fragment length polymorphism (RFLP) or simple sequence repeat 
(SSR) marker (i.e., one data point) was more than US$1 (Linkage 
Genetics, pers. comm.; Biogenetic Services, pers. comm.).

Advances in high-throughput genotyping have markedly 
reduced the cost per data point of molecular markers. This reduc-
tion was mainly the result of three parallel developments ( Jen-
kins and Gibson, 2002; Syvänen, 2005): (i) the discovery of vast 
numbers of single nucleotide polymorphism (SNP) markers in 
many species; (ii) development of high-throughput technologies, 
such as multiplexing and gel-free DNA arrays, for screening SNP 
polymorphisms; and (iii) automation of the marker-genotyping 
process, including streamlined procedures for DNA extraction. 

Prospects for Genomewide Selection for 
Quantitative Traits in Maize

Rex Bernardo* and Jianming Yu

ABSTRACT

The availability of cheap and abundant molecu-

lar markers in maize (Zea mays L.) has allowed 

breeders to ask how molecular markers may 

best be used to achieve breeding progress, with-

out conditioning the question on how breeding 

has traditionally been done. Genomewide selec-

tion refers to marker-based selection without 

fi rst identifying a subset of markers with signifi -

cant effects. Our objectives were to assess the 

response due to genomewide selection com-

pared with marker-assisted recurrent selection 

(MARS) and to determine the extent to which 

phenotyping can be minimized and genotyping 

maximized in genomewide selection. We simu-

lated genomewide selection by evaluating dou-

bled haploids for testcross performance in Cycle 

0, followed by two cycles of selection based on 

markers. Individuals were genotyped for N
M
 mark-

ers, and breeding values associated with each of 

the N
M
 markers were predicted and were all used 

in genomewide selection. We found that across 

different numbers of quantitative trait loci (20, 40, 

and 100) and levels of heritability, the response to 

genomewide selection was 18 to 43% larger than 

the response to MARS. Responses to selection 

were maintained when the number of doubled 

haploids phenotyped and genotyped in Cycle 

0 was reduced and the number of plants gen-

otyped in Cycles 1 and 2 was increased. Such 

schemes that minimize phenotyping and maxi-

mize genotyping would be feasible only if the 

cost per marker data point is reduced to about 2 

cents. The convenient but incorrect assumption 

of equal marker variances led to only a minimal 

loss in the response to genomewide selection. 

We conclude that genomewide selection, as 

a brute-force and black-box procedure that 

exploits cheap and abundant molecular markers, 

is superior to MARS in maize.
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The aggressive use of markers in a maize breeding pro-
gram is exemplifi ed by the Monsanto corporation: from 
2000 to 2006, the number of data points generated by the 
company in its breeding programs increased more than 
40-fold, while their cost per data point decreased more 
than six-fold (Eathington et al., 2007).

The availability of cheap and abundant molecular 
markers changes how markers may be viewed in a breeding 
program. Instead of viewing markers as an add-on to the 
breeding process, we can now ask, “How can molecular 
markers best be used to achieve breeding progress?” without 
conditioning this question on how breeding has tradition-
ally been done. In this study, we investigated genomewide 
selection (Meuwissen et al., 2001) as a specifi c way by which 
cheap and abundant molecular markers can be exploited in 
breeding for a quantitative trait in maize.

Exploiting molecular markers in breeding has involved 
fi nding a subset of markers associated with one or more 
traits. Marker-assisted recurrent selection (MARS) refers 
to the improvement of an F

2
 population by one cycle of 

marker-assisted selection (i.e., based on phenotypic data 
and marker scores) followed by three cycles of marker-
based selection (i.e., based on marker scores only) in an off -
season nursery ( Johnson, 2001, 2004). The marker scores 
are typically determined from about 20 to 35 markers that 
have been identifi ed, in a multiple-regression model, as 
signifi cantly associated with one or more traits of interest 
(Edwards and Johnson, 1994; Koebner, 2003).

In contrast, genomewide selection refers to marker-
based selection without signifi cance testing and without 
identifying of a subset of markers associated with the trait 
(Meuwissen et al., 2001). If, for example, the candidates 
are genotyped for 256 SNP markers distributed across 
the genome, in genomewide selection, the eff ects on the 
quantitative trait (i.e., breeding values) of all 256 markers 
are fi tted as random eff ects in a linear model. Trait values 
are then predicted as the sum of an individual’s breeding 
values across all 256 markers, and selection is subsequently 
based on these genomewide predictions. Studies have 
indicated that genomewide selection leads to high cor-
relations between predicted and true breeding value for a 
quantitative trait (Meuwissen et al., 2001) and is useful in 
dairy cattle (Bos taurus) breeding (Schaeff er, 2006). Pub-
lished information on the use of genomewide selection in 
maize breeding, however, is unavailable.

Our fi rst objective in this study was therefore to assess, 
by simulation, the response resulting from genomewide 
selection compared with MARS, which uses signifi cance 
tests to identify marker-trait associations. Our second 
objective was to determine the extent to which obtain-
ing phenotypic data (i.e., phenotyping) can be minimized 
and genotyping maximized in genomewide selection. If, 
for example, the cost of genotyping on a large scale is 15 
cents per data point and the cost of growing a maize yield-

trial plot is US$20, genotyping for 256 markers would 
then cost less ($38) than conducting yield trials at, say, fi ve 
locations ($100). We therefore investigated the response to 
genomewide selection with diff erent population sizes for 
phenotyping and for subsequent genomewide selection.

MATERIALS AND METHODS

Genomewide Selection and MARS
We considered genomewide selection and MARS as depicted 

in Fig. 1. Cycle 0 is evaluated during the regular growing sea-

son when phenotypic measurements are meaningful. Cycles 

1 and 2 of genomewide selection and MARS are conducted 

in an off -season (e.g., winter) nursery, where phenotypic 

evaluations of maize are not meaningful but where three 

generations can be grown in 1 yr (Koebner, 2003; Johnson, 

2004). For Cycle 0, we considered genomewide selection and 

MARS that involved the production of doubled haploids, as 

our research has shown that the response to marker-based 

selection is greater with doubled haploids than with F
2
 plants 

(P. Mayor and R. Bernardo, unpublished).

In our simulations, we assumed that two parental inbreds 

that diff ered at L quantitative trait loci (QTL) and at N
M
 marker 

loci were crossed to form an F
1
 (Fig. 1). The F

1
 plants were crossed 

Figure 1. Genomewide selection and marker-assisted recurrent 

selection in maize.
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used an N
Sel

 of 4 in Cycles 1 and 2. Given that doubled haploids 

are fully inbred, we used N
Sel(DH)

 = 2N
Sel

 = 8 in Cycle 0.

Genetic Models and Genotypic 
and Phenotypic Values
We considered a trait controlled by L = 20, 40, or 100 QTL, 

each with two alleles. The sizes of the chromosomes and of 

the entire genome (1749 cM) corresponded to those in a pub-

lished maize linkage map (Senior et al., 1996). The genome was 

divided into N
M
 bins, and a marker was assumed to be located 

at the midpoint of each bin. The L QTL were randomly located 

among the 10 chromosomes according to a uniform distribu-

tion across the total genome.

At the kth QTL, the testcross eff ect of the favorable allele was 

ak, with a = (L– 1)/(L + 1) as suggested by Lande and Thompson 

(1990). The testcross eff ect of the less favorable allele was −ak. The 

fi rst QTL therefore had the largest eff ect, the second QTL had the 

second-largest eff ect, and the Lth QTL had the smallest eff ect. The 

fi rst parent had the favorable allele at even-numbered QTL and the 

less-favorable allele at odd-numbered QTL. Coupling and repul-

sion linkages were therefore generated at random, given that QTL 

positions were randomly assigned without regard to the magni-

tude of QTL eff ects. Epistasis was assumed absent so that the vari-

ances at individual QTL (which were needed in later comparisons 

involving equal-versus-true QTL variances) could be calculated.

Random nongenetic eff ects were added to the genotypic 

values to obtain phenotypic values. Specifi cally, we assumed 

that the testcrosses in Cycle 0 were evaluated in six environ-

ments. This replication across environments allowed us to esti-

mate testcross genetic variance (V
G
) and error variance (V

E
) for 

BLUP. The random nongenetic eff ects had a normal distribu-

tion with a mean of zero and were scaled so that testcross heri-

tability, on a testcross-mean basis, was H = 0.20, 0.50, or 0.80 

in the conceptual base (i.e., F
2
) population.

BLUP of Breeding Values 
in Genomewide Selection
In genomewide selection, the performance of the testcrosses of 

doubled haploids in Cycle 0 was modeled as

y = μ1 + Xg + e

where y is an N
DH

 × 1 vector of testcross phenotypic means of 

the doubled haploids in Cycle 0; μ is the overall testcross mean 

of the doubled haploids in Cycle 0; 1 is an N
DH

 × 1 vector 

with all elements equal to 1; X is an N
DH

 × N
M
 design matrix, 

with elements equal to 1 if the doubled haploid is homozygous 

for the marker allele from the fi rst parental inbred (i.e., of the 

initial F
1
) and −1 if the doubled haploid is homozygous for the 

marker allele from the second parental inbred; g is an N
M
 × 1 

vector of breeding values associated with the marker allele from 

the fi rst parental inbred at each of the marker loci; and e is an 

N
DH

 × 1 vector of residual eff ects.

The V
G
 and V

E
 were estimated by analysis of variance from 

the testcross phenotypic values of doubled haploids in Cycle 0. 

The variance of breeding values at each of the N
M
 marker loci 

was assumed equal to V
G
/N

M
 (Meuwissen et al., 2001). The g 

was obtained by solving the mixed-model equations  (Henderson, 

1984), with μ as a fi xed eff ect and g as a random eff ect. In Cycles 

1 and 2 of genomewide selection, the S
0
 plants were selected 

to a haploid inducer, haploids were identifi ed, and chromosome 

doubling was induced (Bordes et al., 1997; Seitz, 2005). Cross-

ing two inbreds maximizes the potential linkage disequilibrium 

(Dudley, 1993) and having only one meiosis in generating dou-

bled haploids preserves a high linkage disequilibrium. In Cycle 0, 

a total of N
DH

 doubled haploids were evaluated for their testcross 

performance when crossed with an unrelated inbred.

The MARS procedure has involved selection with a Lande 

and Thompson (1990) index of both phenotypic data and 

marker data in Cycle 0 (Edwards and Johnson, 1994). But in 

preliminary studies, we found that at the end of selection (after 

Cycle 2 in Fig. 1), the response with phenotypic selection in 

Cycle 0 was about 100 to 102% of the response with combined 

phenotypic and marker selection in Cycle 0. The best N
Sel(DH)

 

doubled haploids in Cycle 0 were therefore selected based only 

on their testcross performance (Fig. 1). The N
Sel(DH)

 doubled 

haploids were intermated to produce F
1
s. These F

1
s were ran-

dom-mated to produce a total of N plants in Cycle 1.

Breeders conceivably would consider genomewide selec-

tion or MARS in several populations at a time, but not all 

populations may perform well enough to warrant further selec-

tion. Assuming that the population as a whole had acceptable 

testcross performance in Cycle 0, the N
DH

 doubled haploids in 

Cycle 0 were subsequently genotyped for a total of N
M
 markers 

(Fig. 1). In genomewide selection, best linear unbiased predic-

tions (BLUP) of breeding values associated with each of the N
M
 

markers were obtained (Meuwissen et al., 2001). In MARS, a 

subset of the N
M
 markers with signifi cant eff ects were identifi ed. 

Out of the N plants in Cycle 1, a total of N
Sel

 plants were then 

selected before fl owering on the basis of their predicted breed-

ing values in genomewide selection or their estimated marker 

scores (Lande and Thompson, 1990) in MARS. For each of the 

two procedures, the N
Sel

 plants in Cycle 1 were random-mated 

to produce Cycle 2. Given that selection occurred before fl ow-

ering, recombination was accomplished in the same generation 

as selection. The procedures for genomewide selection and 

MARS were repeated in Cycle 2 to produce Cycle 3. Overall 

selection responses were based on the mean of Cycle 3.

Values of N
DH

, N, and N
M
 were chosen on the basis of 

existing technologies that allow high-throughput genotyp-

ing of 48 samples for 64 single nucleotide polymorphisms on 

a single chip (Biotrove, 2006). We therefore chose values of 

N
DH

 and N that were multiples of 48 and values of N
M
 that 

were multiples of 64, although our use of these values does not 

necessarily imply that we endorse this particular technology. In 

our comparisons of genomewide selection and MARS (the fi rst 

objective of our study), we assumed N
DH

 = N = 144, given that 

the population sizes used in MARS have typically ranged from 

100 to 150 ( Johnson and Mumm, 1996; Johnson, 2001). In our 

comparisons involving smaller numbers of plants phenotyped 

and larger number of plants genotyped (the second objective of 

our study), we assumed N
DH

 values of 48 and 96 and N values of 

288, 576, and 1152. The number of markers was N
M
 = 64, 128, 

and 256 in both genomewide selection and MARS, and N
M
 = 

32 (half a chip) in MARS and N
M
 = 512 and 768 in genome-

wide selection. Our previous research has indicated that the 

response to selection is largest when the number of selected 

individuals is roughly equal to the number of cycles of selection 

that will be conducted (Bernardo et al., 2006). We therefore 
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 according to their predicted breeding values, that is, Zg, where 

Z was an N × N
M
 design matrix that corresponded to the marker 

genotypes of the N plants evaluated in Cycle 1 or 2. The elements 

in Z were zero if the S
0
 plants in Cycle 1 or 2 were heterozygous 

at the corresponding marker loci.

Estimation of Marker Effects in MARS
Procedures for estimating marker eff ects in MARS have been 

described previously (Bernardo and Charcosset, 2006; Bernardo 

et al., 2006) but are repeated here for convenience. Markers asso-

ciated with the trait were identifi ed and their eff ects were esti-

mated only in Cycle 0. First, multiple regression of phenotypic 

value on the number of marker alleles (0 or 2 in doubled haploids) 

from the fi rst parental inbred was performed on a chromosome-

by-chromosome basis. Signifi cant markers on each chromosome 

were identifi ed by backward elimination. Second, multiple regres-

sion coeffi  cients were obtained by jointly analyzing all the mark-

ers found signifi cant in the per-chromosome analysis. Standard 

procedures were used to handle any singularities encountered in 

multiple regression analysis (Press et al., 1992, p. 56). Relaxed sig-

nifi cance levels (α= 0.20, 0.30, and 0.40), which have been found 

to maximize the response to MARS (Hospital et al., 1997; John-

son, 2001), were used. Selection in Cycles 1 and 2 was based on 

marker scores (Lande and Thompson, 1990), which were calcu-

lated for each S
0
 plant from the multiple regression coeffi  cients for 

the markers with signifi cant eff ects.

True versus Equal QTL Variances in 
Genomewide Selection
We investigated the eff ects of the convenient but incorrect 

assumption, in genomewide selection, that the variances due 

to each marker were equal (i.e., V
G
/N

M
). Suppose the test-

cross genetic variance at the kth QTL is V
G(k)

 = 1/4a2k and the 

total testcross genetic variance across all QTL is ΣV
G(k)

. We 

simulated the situation in which each of the N
M
 markers cor-

responded exactly to a unique QTL. We then assessed the 

selection response when the variance due to each marker was 

conveniently but incorrectly modeled as ΣV
G(k)

/L, versus the 

selection response when the variance at the kth marker was 

equal to its true value, V
G(k)

.

Data Analysis
Each simulation experiment comprised a combination of 

N
DH

, N, N
M

, L, and heritability. We conducted 1000 repeats 

of each simulation experiment and averaged the results across 

the repeats. Each repeat diff ered in the location of QTL, the 

genotypes of the individuals sampled, and their phenotypic val-

ues. Selection responses were expressed in units of the testcross 

genetic standard deviation in the base population. The statisti-

cal signifi cance (P = 0.05) of diff erences in selection response 

was determined with z tests, using the variances of the selection 

response across the 1000 repeats of an experiment.

RESULTS AND DISCUSSION

Genomewide Selection versus MARS

Genomewide selection led to larger responses than MARS. 
Consider population sizes of N

DH
 = 144 doubled haploids 

in Cycle 0 and N = 144 plants in Cycles 1 and 2. At the 
end of selection (Fig. 1), the responses (in units of the test-
cross genetic standard deviation in the base population) to 
genomewide selection ranged from 2.86 to 4.67 across dif-
ferent numbers of QTL (L = 20, 40, and 100), numbers of 
markers (N

M
 = 64 to 768), and levels of heritability (H = 

0.20, 0.50, and 0.80; Table 1). In comparison, the responses to 
MARS ranged from 2.22 to 4.19. As expected, the responses 
to both genomewide selection and MARS increased as heri-
tability and the number of QTL increased. Heritability had a 
larger eff ect than the number of QTL on selection response.

For a given number of QTL and heritability, the maxi-
mum response across diff erent N

M
 was always greater with 

genomewide selection than with MARS (Table 1). For a 
highly heritable trait (H = 0.80) controlled by L = 20 QTL, 
the maximum responses were 4.10 with genomewide selec-
tion (N

M
 = 512) and 3.87 with MARS (N

M
 = 128). These 

maximum responses represented a 6% advantage of genome-
wide selection over MARS (i.e., R

GS:MARS
 = 106%). But for a 

trait controlled by many QTL (L = 100) and with a low heri-
tability (H = 0.20), the maximum responses were 3.31 with 
genomewide selection (N

M
 = 512) and 2.80 with MARS 

(N
M
 = 64). These maximum responses represented an 18% 

advantage of genomewide selection over MARS. The maxi-
mum responses with genomewide selection and MARS 
therefore suggest that genomewide selection is most useful 
for complex traits that are controlled by many QTL and have 
low heritability. Furthermore, a selection index comprising 
several traits would have many component QTL and would 
likely have low heritability. We speculate that genomewide 
selection would be more useful for improving an index of 
several traits than for improving a single trait alone.

Both the genomewide selection and MARS schemes 
we considered involved selection for testcross performance 
among doubled haploids in Cycle 0 (Fig. 1). Regard-
less of the number of QTL, the responses to selection 
for testcross performance in Cycle 0 were 1.60 for H = 
0.20, 2.26 for H = 0.50, and 2.61 for H = 0.80 (Table 
1). These results indicated that, in the breeding schemes 
for genomewide selection and MARS, phenotypic selec-
tion in Cycle 0 accounted for more than 50% of the total 
response to selection. One cycle of testcross phenotypic 
selection among doubled haploids would require at least 
2 yr to complete, even with the aggressive use of off -sea-
son nurseries. Thus, as other researchers have noted for 
MARS (Edwards and Johnson, 1994; Hospital et al., 1997; 
Koebner, 2003), the advantage of marker-based selection 
in genomewide selection or MARS is in gain per unit 
time rather than in gain per cycle.

Given that the gain from phenotypic selection in Cycle 
0 is the same for both genomewide selection and MARS, 
the total responses after Cycle 2 do not solely represent the 
per se advantage of selection based on all markers versus 
selection based only on signifi cant markers. When the 
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response due to testcross phenotypic selection in Cycle 0 
was disregarded, the advantage of genomewide selection 
over MARS increased. Consider a highly heritable trait (H 
= 0.80) controlled by L = 20 QTL. When the response 
due to phenotypic selection in Cycle 0 (2.61, Table 1) was 
disregarded, the maximum response was 18% higher with 
genomewide selection than with MARS (i.e., R

GS-PS:MARS-

PS
 = 118%). Likewise, for a trait controlled by many QTL 

(L = 100) and with low heritability (H = 0.20), the maxi-
mum response was 43% higher with genomewide selection 
than with MARS. The response directly due to marker-
based selection in Cycles 1 and 2 was therefore substantially 
greater with genomewide selection than with MARS.

In genomewide selection, the use of N
M
 = 128, 256, 

512, or 768 markers did not lead to signifi cant diff erences 
(LSD

0.05
 ≅ 0.10 in Table 1) when heritability was H = 

0.20 or when L = 20 QTL controlled the trait (Table 1). 
But when heritability was H = 0.50 or 0.80 and when L 
= 40 or 100 QTL controlled the trait, the responses were 
larger with N

M
 = 256, 512, or 768 markers than with N

M
 

= 128 markers. Regardless of the heritability and number 
of QTL, responses to genomewide selection were smallest 
when N

M
 = 64 markers were used. These results indicate 

that a minimum of N
M
 = 128 to 256 polymorphic markers 

should be used in genomewide selection in maize and that 
more markers should be used for complex traits that have, 
at the same time, a high heritability (e.g., due to exten-
sive phenotyping). These suggested numbers of markers 
are also likely dependent on the population size used (i.e., 
N

DH
 = N = 144); with a fi nite population size, the number 

of recombinants between closely spaced markers becomes 
low and the information from adjacent markers becomes 
redundant as the number of markers increases.

In contrast, responses to MARS were largest with N
M
 

= 64 or 128 markers (Table 1). The responses to MARS 
with N

M
 = 32 markers were smaller because of insuffi  -

cient coverage of the genome. When the population size 
is small and heritability is low, exploiting the eff ects of 
only the major QTL rather than of all QTL leads to larger 
responses in MARS (Bernardo and Charcosset, 2006). 
Using only N

M
 = 64 markers when heritability was H 

= 0.20 typically led to 20 to 30 markers being declared 
signifi cant (results not shown). In contrast, using N

M
 = 

256 markers led to 75 to 125 markers being declared sig-
nifi cant regardless of the number of QTL. The number of 
signifi cant markers often exceeded the number of QTL, 
indicating model overfi tting when N

M
 = 256 markers 

were used in multiple regression in MARS.

Genomewide Selection with Minimum 
Phenotyping and Maximum Genotyping
The standard scheme we considered for genomewide 
selection involved phenotyping and genotyping N

DH
 = 

144 doubled haploids in Cycle 0 and genotyping N = 144 

Table 1. Response to testcross phenotypic selection among 

doubled haploids in Cycle 0, and to testcross phenotypic 

selection in Cycle 0 plus two cycles of selection based either 

on markers with signifi cant effects (marker-assisted recur-

rent selection, MARS) or on all markers (genomewide selec-

tion) in simulated maize populations.

Number 
of QTL

Method
Number of 
markers

 Heritability

0.20 0.50 0.80

20, 40, 

or 100

Phenotypic 

selection
0 1.60† 2.26 2.61

20 MARS 32 2.50 (0.4)‡ 3.14 (0.4) 3.38 (0.4)

64 2.72§ (0.3) 3.42 (0.4) 3.73 (0.4)

128 2.54 (0.3) 3.47 (0.2) 3.87 (0.4)

256 2.26 (0.2) 3.19 (0.2) 3.72 (0.2)

Genomewide 

selection
64 2.86 3.50 3.76

128 2.98 3.67 4.02

256 3.06 3.72 3.98

512 3.05 3.68 4.10

768 3.06 3.73 4.05

R
GS:MARS

¶ 113% 107% 106%

R
(GS-PS):(MARS-PS)

# 130% 121% 118%

40 MARS 32 2.67 (0.4) 3.26 (0.4) 3.60 (0.4)

64 2.76 (0.4) 3.59 (0.4) 3.96 (0.4)

128 2.60 (0.2) 3.57 (0.2) 3.99 (0.4)

256 2.22 (0.2) 3.22 (0.2) 3.88 (0.2)

Genomewide 

selection
64 3.03 3.72 4.08

128 3.13 3.92 4.30

256 3.18 3.96 4.42

512 3.15 4.02 4.47

768 3.17 3.98 4.46

R
GS:MARS

115% 112% 112%

R
(GS-PS):(MARS-PS)

136% 132% 135%

100 MARS 32 2.69 (0.4) 3.36 (0.4) 3.70 (0.4)

64 2.80 (0.3) 3.74 (0.4) 4.13 (0.4)

128 2.62 (0.2) 3.60 (0.2) 4.19 (0.4)

256 2.23 (0.2) 3.32 (0.2) 3.91 (0.2)

Genomewide 

selection
64 3.10 3.89 4.24

128 3.26 4.03 4.55

256 3.23 4.12 4.63

512 3.31 4.15 4.67

768 3.27 4.15 4.61

R
GS:MARS

118% 111% 111%

R
(GS-PS):(MARS-PS)

143% 128% 130%

†Responses are in units of the testcross genetic standard deviation in the base 

population. Population sizes were N
DH

 = 144 doubled haploids in Cycle 0 and N 

= 144 plants in Cycles 1 and 2. Number of selected individuals was N
Sel(DH)

 = 8 

doubled haploids in Cycle 0 and N
Sel

 = 4 plants in Cycles 1 and 2. The LSD
0.05

 was 

approximately 0.10.

‡In parenthesis is the signifi cance level, for selecting markers, that led to the largest 

response to MARS.

§Underlined number is the largest response to MARS and genomewide selection for 

a given number of QTL and heritability.

¶For a given number of QTL and heritability, R
GS:MARS

 is the ratio between the maxi-

mum response to genomewide selection and the maximum response to MARS.

#For a given number of QTL and heritability, R
(GS-PS):(MARS-PS)

 is the ratio between the 

maximum response to genomewide selection minus the response to phenotypic 

selection in Cycle 0, and the maximum response to MARS minus the response to 

phenotypic selection in Cycle 0.
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plants in Cycles 1 and 2. Compared with this standard 
scheme, reducing the number of doubled haploids to N

DH
 = 

96 led to similar responses provided that larger values of N 
were used. Consider a trait controlled by L = 40 QTL and 
with a heritability of H = 0.50. The maximum response 
under the standard scheme for genomewide selection was 
4.02 (Table 1). A comparable response (4.00) was achieved 
when N

DH
 = 96 doubled haploids were evaluated in Cycle 

0, N = 1152 plants were evaluated in Cycles 1 and 2, and 
N

M
 = 128 markers were used (Table 2). A comparable 

response (3.96) was also achieved when N
DH

 = 96 doubled 
haploids were evaluated in Cycle 0, N = 576 plants were 
evaluated in Cycles 1 and 2, and N

M
 = 256 markers were 

used. Both of these alternative schemes involved the same 
number of data points in Cycles 1 and 2, that is, 147 456 
data points with N = 1152 plants × N

M
 = 128 markers, 

or N = 576 plants × N
M
 = 256 markers. Compared with 

the standard scheme for genomewide selection, these two 
combinations of N and N

M
 also maintained the selection 

response for other numbers of QTL (L = 20 or 100).
Compared with the standard scheme for genomewide 

selection, reducing the number of doubled haploids to N
DH

 
= 48 led to a decrease in selection response regardless of the 
number of markers or the number of plants in Cycles 1 and 
2 (Table 2). For a trait controlled by L = 40 QTL and with 
a heritability of H = 0.50, the maximum response with N

DH
 

= 48 was only 3.47 (for N
M
 = 256 markers and N = 1152 

plants in Cycles 1 and 2). These results therefore suggest 
that some minimum amount of phenotyping is required for 
genomewide selection. Specifi cally, approximately N

DH
 = 

100 doubled haploids need to be evaluated for their testcross 
performance in Cycle 0. Drastically reducing the number 
of doubled haploids, say to N

DH
 = 50, would severely limit 

the response to genomewide selection regardless of the 
population sizes used for subsequent marker-based selection 
in Cycles 1 and 2.

Modeling Variances at Marker Loci
A BLUP approach and a Bayesian approach to genome-
wide selection were considered by Meuwissen et al. (2001). 
A Bayesian approach allows the modeling of variances 
due to individual QTL. In contrast, the simpler BLUP 
approach, which we used in this study, assumed that each 
marker has a variance equal to V

G
/N

M
. This assumption 

of equal, underlying marker variances does not imply that 
the BLUP of breeding values associated with each of the 
N

M
 markers are equal; the assumption simply means that 

the marker eff ects are drawn from the same distribution 
with a variance of V

G
/N

M
, and that the eff ects of indi-

vidual markers are expected to vary. For example, with L 
= 40 QTL and N

M
 = 128 markers, the predicted eff ects of 

the favorable marker allele were unequal across the N
M
 = 

128 markers (Fig. 2). The BLUP of marker eff ects ranged 
from near zero to 0.25 for H = 0.20, 0.41 for H = 0.50, 

and 0.61 for H = 0.80. The true eff ects of the favorable 
QTL allele ranged from 0.14 to 0.95. These results show 
how the eff ects of the L = 40 QTL were jointly explained 
by all N

M
 = 128 marker loci.

The penalty associated with the false assumption of 
equal QTL variances can be assessed from the diff erence 
in response when the true QTL variances are used, versus 

Table 2. Response to genomewide selection for different 

numbers of QTL, markers, doubled haploids evaluated in 

Cycle 0 (N
DH

), and individual plants in genomewide selection 

(N) in simulated maize populations.

 Number of: 

N
DH

N

 Heritability

QTL Markers 0.20 0.50 0.80

20 128 48 288 2.35† 3.09 3.42

576 2.44 3.08 3.44

1152 2.45 3.18 3.55

96 288 2.80 3.52 3.85

576 2.95 3.62 3.95

1152 3.03 3.68 4.05

256 48 288 2.31 3.10 3.42

576 2.55 3.15 3.56

1152 2.56 3.28 3.62

96 288 2.86 3.61 3.94

576 2.99 3.67 4.04

1152 3.07 3.74 4.06

40 128 48 288 2.41 3.21 3.60

576 2.50 3.27 3.74

1152 2.62 3.38 3.80

96 288 2.95 3.76 4.21

576 3.09 3.82 4.36

1152 3.24 4.00 4.45

256 48 288 2.57 3.24 3.73

576 2.53 3.37 3.81

1152 2.63 3.47 3.91

96 288 3.05 3.79 4.31

576 3.11 3.96 4.47

1152 3.20 4.03 4.49

100 128 48 288 2.48 3.26 3.74

576 2.52 3.41 3.88

1152 2.67 3.53 4.04

96 288 3.09 3.90 4.47

576 3.13 4.10 4.52

1152 3.29 4.15 4.67

256 48 288 2.49 3.30 3.81

576 2.60 3.48 3.96

1152 2.68 3.53 4.07

96 288 3.12 4.02 4.53

576 3.28 4.15 4.69

1152 3.40 4.28 4.79

†Responses are in units of the testcross genetic standard deviation in the base 

population. Number of selected individuals was N
Sel(DH)

 = 8 doubled haploids in 

Cycle 0 and N
Sel

 = 4 plants during genomewide selection in Cycles 1 and 2. The 

LSD
0.05

 was approximately 0.10.
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when the marker variances are conveniently but incorrectly 
assumed equal to V

G
/N

M
. The loss in selection response due 

to this convenient but incorrect assumption ranged from 8% 
for a trait controlled by L = 100 QTL and with a heritabil-
ity of H = 0.20, to 0% for a trait controlled by L = 20 QTL 
and with a heritability of H = 0.80 (results not shown). The 
mean loss in selection response, across diff erent numbers 
of QTL and levels of heritability, was only 2%. This result 
indicated that, for the population sizes we considered, only 
a minimal loss in selection response occurs when the vari-
ances at all marker loci are incorrectly assumed equal to 
V

G
/N

M
. This result further suggested that, for the genome-

wide selection schemes we considered, Bayesian approaches 
to modeling the variance due to individual markers would 
have little, if any, advantage.

Costs of Genomewide Selection Schemes
The usefulness of diff erent schemes for genomewide 
selection would depend on the costs involved. Suppose 
the cost of obtaining testcross performance data is US$100 
for each doubled haploid (i.e., yield trials at fi ve locations 
and US$20 per location), and the cost of genotyping is 15 
cents per data point. Ignoring, for simplicity, other associ-
ated costs (e.g., production of doubled haploids, recombi-
nation, growing Cycle 1 and Cycle 2 plants), the cost of 
a standard scheme for genomewide selection (N

DH
 = 144 

doubled haploids, N = 144 plants in Cycles 1 and 2, and 
N

M
 = 128 markers) would be US$22,694. Of this total 

cost, 63% is for phenotyping in Cycle 0 and 37% is for 
genotyping in Cycles 0, 1, and 2.

We have previously mentioned that compared with 
the standard scheme with N

DH
 = N = 144 doubled hap-

loids or plants and N
M
 = 128 markers, similar responses 

were achieved with N
DH

 = 96 doubled haploids and either 
(i) N

M
 = 128 markers and N = 1152 plants in Cycles 1 

and 2 or (ii) N
M
 = 256 markers and N = 576 plants in 

Cycles 1 and 2. For simplicity, assume the cost of growing 
diff erent numbers of individual plants in Cycles 1 and 2 
(e.g., N = 144 to 1152 plants) is negligible compared with 
the total cost of phenotyping and genotyping. The two 
aforementioned schemes with minimum phenotyping and 
maximum genotyping would cost the same as the stan-
dard scheme only if the cost per marker data point reduced 
to 2 cents. More generally, the cost of a marker data point 
would need to be about 1000/0.02 = 5000 times less than 
the cost of phenotyping one entry. This rough analysis 
suggests that, at present, genomewide selection schemes 
that minimize phenotyping and maximize genotyping are 
not yet feasible. But as the costs of phenotyping increase 
and the costs of genotyping decrease, such schemes would 
be worth considering.

The use of standardized, off -the-shelf SNP chips 
would decrease the costs associated with genotyping ( Jen-
kins and Gibson, 2002). By this we mean that instead of 
using diff erent sets of SNP markers for each cross, the 
same set of, say, 256 or 512 SNP markers could be used for 
all breeding populations undergoing genomewide selec-
tion. Although some of the SNP markers will not always 
be polymorphic, the economy of scale in a standardized 
genotyping platform should off set the cost of parental 
screens and manufacturing custom SNP chips for diff erent 
breeding populations. On the other hand, costs associated 
with growing plants in Cycles 1 and 2, collecting leaf tis-
sue, and extracting DNA would remain constant regard-
less of the number of SNP markers used.

Application in Breeding Programs
The use of doubled haploids rather than F

2
 plants in Cycle 

0 not only leads to a larger selection response (P. Mayor 
and R. Bernardo, unpublished), but it also has practical 
advantages. Specifi cally, in addition to recombining the 
best doubled haploids in Cycle 0 to produce Cycle 1 (Fig. 
1), the best doubled haploids can also be advanced for fur-
ther evaluation and testcrossing in the breeding program. 
Producing doubled haploids by crossing F

1
 plants to a hap-

loid inducer and producing F
2
 plants by selfi ng F

1
 plants 

both require only one generation (Bordes et al., 1997; 
Seitz, 2005). Testcross selection among doubled haploids 
in Cycle 0 therefore does not entail any loss in time com-
pared with testcross selection among F

2
 plants.

In Cycle 0 we considered selection based on testcross 
phenotypic data only, instead of selection based on an 
index (Lande and Thompson, 1990) that combines test-
cross phenotypic data and marker scores. As already men-
tioned, in our preliminary studies, the total response with 
phenotypic selection in Cycle 0 was about 100 to 102% of 

Figure 2. True effects of 40 quantitative trait loci (QTL) and predicted 

breeding values, for genomewide selection, associated with 128 

marker loci at different levels of testcross heritability (H). Predicted 

breeding values were for a population size of N
DH

 = 144 doubled 

haploids in cycle 0 and were averaged across 1000 repeats of 

the simulation experiment. In each repeat, the 128 markers were 

ranked in descending order of their effects.
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the response with combined phenotypic and marker selec-
tion in Cycle 0. The reasons for this lack of superiority of 
combined phenotypic and marker selection are unclear. 
Perhaps the population sizes were too small for obtain-
ing marker scores that were good enough to be useful in 
selection. Or perhaps the potential gains from combined 
phenotypic and marker selection were inherently limited 
because the procedure was postdictive rather than predic-
tive; that is, a data set was used to estimate marker eff ects, 
and these marker eff ects were then used to help identify 
the best individuals in the same data set.

Regardless of these unclear reasons, selection based 
only on phenotypic data in Cycle 0 has practical advan-
tages. Specifi cally, it is unlikely that all populations eval-
uated in Cycle 0 would be viable candidates for further 
selection. In other words, breeders would discard Cycle 
0 populations with unacceptable performance for one or 
more traits and would retain only those populations with 
acceptable performance. In the genomewide selection 
scheme we considered, the doubled haploid population in 
Cycle 0 is genotyped only after its testcross performance 
is deemed acceptable based on fi eld tests. This procedure 
therefore prevents the unnecessary genotyping of dou-
bled haploid populations that would have been discarded 
before marker-based selection. Marker data are not needed 
immediately after Cycle 0 because two generations of 
recombination are required for the doubled haploids (Fig. 
1). Genotyping only after Cycle 0 therefore does not delay 
genomewide selection in Cycles 1 and 2.

Maize breeding typically involves four steps: (Step 1) 
choosing the parents of a breeding population, (Step 2) 
improving the mean performance of the population before 
inbred development, (Step 3) developing superior inbreds 
from the population, and (Step 4) fi nding combinations 
of inbreds (among all available inbreds) that perform well 
as single-cross hybrids. A BLUP approach based only on 
phenotypic and pedigree data has been found useful for 
evaluating the combining ability of maize inbreds (for 
Step 1) and predicting the performance of single crosses 
before fi eld testing (for Step 4; Bernardo, 1996). On the 
other hand, doubled haploids or other types of progenies 
from the same biparental cross have the same pedigree. 
As such, pedigree-based BLUP is not useful in within-
population selection (Steps 2 and 3; Bernardo, 2002, p. 
234–235) unless strong family structures are developed 
during selfi ng. While we found in this study that genome-
wide selection is useful in population improvement, we 
speculate that genomewide selection will be less useful 
in choosing parents of a breeding population and fi nding 
pairs of inbreds that perform well as single-cross hybrids.

The promise of genomewide selection obviously does 
not imply that gene discovery should no longer be done. 
Several approaches for discovering QTL have been pro-
posed: comparative genomics, association genetics, can-

didate-gene approach, and QTL mapping (reviewed by 
Mackay, 2001). These approaches for gene discovery will 
continue to be vital for increasing our basic knowledge 
of the genes underlying quantitative traits. Compara-
tive genomics and association mapping usually focus on 
diverse germplasm, and the results from these approaches 
may not be readily applicable to selection in narrow, elite 
germplasm (Breseghello and Sorrells, 2006; Fig. 3). Can-
didate gene approaches, which are not mutually exclusive 
of comparative genomics and association mapping, utilize 
biological knowledge to identify a few genes that may be 
introgressed into elite germplasm to improve quantitative 
traits (Gebhardt et al., 2007). Genome selection, in con-
trast, does not involve gene discovery. But even though 
MARS and genomewide selection do not emphasize gene 
discovery, QTL mapping can and should be done in con-
junction with both MARS and genomewide selection 
(Fig. 3). Although selection is genomewide, the markers 
with large, highly signifi cant eff ects may be considered as 
putatively linked to major QTL.

We conclude that genomewide selection, which does 
not involve identifying a set of markers associated with the 
traits of interest, is superior to MARS, which involves fi nd-
ing a subset of markers with signifi cant eff ects. Genome-
wide selection can be described as a black-box procedure 
(Haley et al., 2006) as well as a brute-force procedure for 
exploiting markers to improve a quantitative trait. By brute 
force, we mean that large numbers of markers are used as 
a surrogate for the phenotype and large numbers of indi-
vidual plants are evaluated for their marker data. By black 
box, we mean that the procedure does not involve dissect-
ing the mechanisms underlying the control and inheritance 
of quantitative traits. Akin to classical quantitative genetics, 
this black-box property of genomewide selection eff ectively 
avoids issues pertaining to the number of QTL controlling a 
trait, the distribution of eff ects of QTL alleles, and epistatic 
eff ects due to genetic background. Rather, genomewide 

Figure 3. Strategic positioning of genomewide selection compared 

to other methodologies for gene discovery and selection for 

complex traits.
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selection simply aims to increase the mean performance of 
a particular population by exploiting cheap and abundant 
molecular markers.
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