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Genomewide Selection when
Major Genes Are Known

ABSTRACT

Current methods for genomewide selection do
not distinguish between known major genes
and random genomewide markers. My objec-
tives were to determine if explicitly modeling
the effects of known major genes affects the
response to genomewide selection, and to
identify situations in which considering major
genes as having fixed effects is helpful. Simu-
lation experiments showed that having a fixed
effect for a major gene became more advanta-
geous as the percentage of genetic variance
(V) explained by a major gene (R? increased
and as the heritability on an entry-mean basis
(h?) increased. With R? = 50% and h? = 0.80, the
relative efficiency (based on selection gains in
Cycle 4) with a major gene having a fixed ver-
sus random effect was 112-121%. Specifying a
fixed effect for a single major gene was never
disadvantageous except with R?> < 10%. With
h? > 0.50, specifying a fixed versus random
effect for a single major gene had little effect on
prediction accuracy in Cycle 0. However, pre-
diction accuracy in later cycles declined more
rapidly when a major gene had a random effect
instead of a fixed effect. The results with L = 2
or 3 major genes were similar to those with one
major gene. In contrast, the usefulness of gene
information was low with L = 10 major genes.
Overall, major genes should be fitted as hav-
ing fixed effects in genomewide selection when
only a few major genes are present and each
major gene accounts for >10% of V..
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HE BEST WAYs of using molecular markers in selection largely

depend on the genetic architecture of the trait (Bernardo,
2008). Some simpler traits, such as disease resistance or plant com-
position, may have major genes or quantitative trait loci (QTL) that
account for a large percentage of the variation for the trait. Exam-
ples of major genes or QTL are the diacylglycerol acyltransferase
(DGAT) gene for kernel oil concentration in maize (Zea mays L.)
(Zheng et al., 2008), glutenin genes for dough quality in wheat
(Triticum aestivum L.) (Weegels et al., 1996; Eagles et al., 2002), and
several QTL for resistance to cyst nematode (Heterodera glycines Ichi-
nohe) in soybean |Glycine max (L.) Merrill] (Concibido et al., 2004).
For such traits, a useful breeding approach is to find markers for the
major genes or QTL, confirm their effects in different genetic back-
grounds, and widely introgress the validated major genes or QTL
across elite germplasm (Bernardo, 2010).

But for more complex traits, such as grain yield in elite germ-
plasm, the preferred approach that has emerged is to bypass QTL
mapping altogether and to instead identify the best individuals in a
population by genomewide selection (or genomic selection) (Meu-
wissen et al., 2001). Unlike QTL mapping, genomewide selection
does not involve finding markers with significant effects on the
trait but instead uses a large set of random, genomewide mark-
ers to predict performance. Genomewide prediction equations are
developed from a training population that has been genotyped and
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phenotyped, and the prediction equations are used to select
candidates in a test population that has been genotyped but
not phenotyped.

Even when major genes or QTL are present, a sub-
stantial portion of the genetic variance (V) for the trait
may be due to unknown background QTL with minor
effects. For such traits, introgressing only the major genes
or QTL will fail to capture the effects of minor QTL. On
the other hand, current genomewide selection approaches
do not explicitly model the effects of major genes or QTL
versus background QTL. Marker-based selection methods
that lead to genetic gains at both known major genes or
QTL and unknown minor QTL would be useful.

Results in plants have shown that ridge regression—
best linear unbiased prediction (RR-BLUP) is useful for
obtaining genomewide predictions (Lorenzana and Ber-
nardo, 2009; Heftner et al., 2009; Lorenz et al., 2011; Guo
et al., 2012; Schulz-Streeck et al., 2012). For a given total
number of markers (N,,), RR-BLUP assumes that each
marker accounts for (1/N,,)™ of V,. Now suppose that one
of the N,, markers corresponds to a known major gene.
In this situation, the effect of the major gene is naturally
included in the RR-BLUP model and genomewide selec-
tion will lead to gains at both the known major gene and
the unknown background QTL. However, the assumption
of a common variance for the known major gene and for
each of the remaining N,, — 1 markers leads to an underes-
timation (i.e., overshrinkage towards zero) of the estimated
effect of the major gene. Such underestimation may affect
the response to several cycles of genomewide selection
(Combs and Bernardo, 2013).

A straightforward alternative is to model any known
major genes or QTL as having fixed effects and the
unknown minor QTL as having random effects in RR-
BLUP (Hayr et al., 2013). Suppose a number of major genes
(L) are known to control a trait. Three approaches that dif-
fer in the number of major genes with fixed effects (K) can
then be used. First, the L major genes may not be given any
special treatment and their effects are then modeled as ran-
dom effects, along with those of genomewide markers, in
RR-BLUP (K = 0). Second, all L major genes may be spec-
ified as having fixed effects in the genomewide prediction
model (K = L). Third, if some major genes are known to be
more important than others, a subset of major genes with
the largest effects can be specified as having fixed effects
and the remaining major genes with smaller effects are not
given any special treatment in RR-BLUP (K < L).

The usefulness of these three approaches for incor-
porating information on known major genes in genome-
wide selection has not been reported. My objectives in this
study were to determine if explicitly modeling the effects
of known major genes affects the response to genomewide
selection, and to identify situations in which considering
major genes as having fixed effects 1s helpful.

MATERIALS AND METHODS

Simulation Experiments
Each simulation experiment comprised a combination of L, K,
percentage of I, explained by a major gene (R?), heritability on
an entry-mean basis (h%), and population size (N) used during
genomewide selection. Along with the L major genes, 100 QTL
with minor effects also controlled the trait. Genotypic values were
defined relative to testcross performance, as appropriate for maize.
The scheme for genomewide selection was the same as that
simulated by Bernardo and Yu (2007) and studied empirically
in maize by Massman et al. (2013) and Combs and Bernardo
(2013): a Cycle 0 population was phenotyped and genotyped, and
the genomewide prediction equations developed in Cycle 0 were
applied to several cycles of selection based on genomewide mark-
ers. In this study, each simulation experiment was repeated 1000
times. Each repeat differed in the location of the 100 minor QTL
and in the genotypes, genotypic values, and phenotypic values at
each cycle of genomewide selection.

Major Genes, Minor QTL,

and Molecular Markers

The total number of major genes was L= 1,2, 3, or 10. With L =
1, the value of R? was 1/2 (50%), 1/3 (33%), 1/4 (25%), 1/6 (17%),
1/10 (10%), and 1/20 (5%). With L = 2, the R? values were 33%
for the first major gene and 17% for the second major gene. With
L = 3, the R? values were 25% for the first major gene, 17% for
the second major gene, and 8% for the third major gene. With L
=10, each major gene had R? = 5%. With L > 2, the major genes
therefore jointly accounted for 50% of 17..

The L major genes and 100 minor QTL were located, along
with N,, =438 marker loci, on 10 chromosomes that corresponded
to a 1749-cM maize linkage map (Senior et al., 1996). The choice
of N}, = 438 markers was based on previous results showing that
responses to multiple cycles of genomewide selection were similar
with 256 to 768 markers (Bernardo and Yu, 2007). The genome
was divided into N,, bins that were 1749/N,, = 4 cM long. A
marker was located at the midpoint of each bin. The L major genes
were unlinked to each other, with the ith major gene being located
on the ith chromosome. Furthermore, each of the L major genes
corresponded to one of the N,, markers. Each major gene was
therefore in perfect linkage with one known marker.

The 100 minor QTL were randomly located among the 10
chromosomes. Unlike the major genes, each minor QTL there-
fore was not constrained to correspond to one of the N,, mark-
ers. The sizes of minor QTL effects followed a geometric series
(Lande and Thompson, 1990; Bernardo and Yu, 2007). Testcross
means behave in an additive manner (Bernardo, 2010, p. 84), and
dominance and epistasis were absent. For reference, the effect of
the most important minor QTL ranged from 2% of 7, with L >
2, to 4% of V, with L =1 and R? = 5%.

Cycle 0 of Genomewide Selection

Cycle 0 of genomewide selection was a population of N = 100 or
250 F, individuals derived from the cross between two inbreds;
the impact of using doubled haploids instead of F, individuals or
F, families in genomewide selection has been previously studied
by Mayor and Bernardo (2009). At the marker loci that corre-
sponded to the L major genes, the first parent had the favorable
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allele at the odd-numbered loci whereas the second parent had
the favorable allele at the even-numbered loci. Likewise, at the
100 minor QTL, the first parent had the favorable allele at the
odd-numbered QTL whereas the second parent had the favor-
able allele at the even-numbered QTL.

Testcross genotypic values of the N Cycle 0 plants were
obtained as the sum of genotypic values of an individual across
the L major genes and 100 minor QTL. Phenotypic values were
simulated for testcrosses of the N individuals in each of eight envi-
ronments with one replication in each environment. Phenotypic
values were obtained by adding a random nongenetic effect to the
genotypic value of each individual in each environment. The non-
genetic effects were normally and independently distributed with
a mean of zero and a nongenetic variance scaled to achieve h* =
0.20, 0.50, or 0.80. To facilitate comparisons across different values
of L, the nongenetic variance was calculated and h? was expressed

) only, which

relative to the genetic variance at minor QTL (VQTL

remained constant regardless of L. The Vr was estimated in each

TL
repeat as the variance among testcross genotypic values of 20,000

individuals segregating at the 100 minor QTL only (L = 0).

Genomewide Selection with All or a Subset

of Known Major Genes

When all N, markers were assumed as having random effects in
RR-BLUP (K = 0), the covariance of marker effects was /() =
IV, where m was an N, X 1 vector of marker effects, I was an
Ny, X N,, identity matrix, and V,, was the variance due to each
marker (Meuwissen et al., 2001). When K out of the N, mark-
ers were considered as having fixed effects because they corre-
sponded to known major genes, the covariance of marker effects
was V(m) = FI/, where F was an N, X N, diagonal matrix with
(i) diagonal elements of O for the K markers that corresponded to
major genes and that were considered to have fixed effects, and
(i1) diagonal elements of 1 for the N,, — K markers with random
effects. The m vector, which included both fixed (for K > 0)
and random effects of markers, was then solved with the usual
mixed-model equations for RR-BLUP (Bernardo, 2010, p. 294).

When only a subset of the major genes was explicitly speci-
fied in the model, those with the largest effects were successively
considered as the ones with fixed effects. As previously mentioned,
the R? values with L = 3 were 25% for the first major gene, 17%
for the second major gene, and 8% for the third major gene. This
meant that with L = 3 and K = 1, the marker for the first major
gene was considered as having a fixed effect. With L =3 and K =
2, the markers for the first and second major genes were considered
as having fixed effects. With L =10 and K <L, all major genes had
an R? of 5% and the major genes on the lower-numbered chromo-
somes were first considered as those having fixed effects.

For the N, — K markers with random effects, 1, was equal
to V,/(N,, — K), where V, was the genetic variance that was
not due to the K major genes with fixed effects. In other words,
the 17, used in calculating V}, was due to the joint effects of
the 100 minor QTL and the L — K major genes that were not
specified as having fixed effects in the model. For simplicity,
the value of I/, was estimated in two steps. In the first step, the
effects of the K major genes were estimated from the Cycle 0
phenotypic and marker data by simple linear regression (for K =
1) or multiple linear regression (for K > 1) as b = (XIX)~'Xly,
where b was a K X 1 vector of the estimated effect(s) of the K

major gene(s), X was an N X K design matrix that related b to
y, and y was an N X 1 vector of the mean phenotypic value,
expressed as a deviation from the overall mean, of the Nindivid-
uals across all eight environments. An element of X was 1 if the
individual was homozygous for the marker allele for the major
gene, 0 if the individual was heterozygous, and —1 otherwise.
In the second step, adjusted phenotypic values were obtained by
subtracting Xb from the vector of phenotypic values in each of
the eight environments. The I/, and nongenetic variance were
then estimated from ANOVA of the adjusted phenotypic values
and in accordance with a one-factor design (Bernardo, 2010, p.
152). Simulations indicated that, as expected, the above two-
step procedure led to good estimates of 1/, (results not shown).

Cycles 1 to 4 and Data Analysis

The performance of the N = 100 or 250 individuals in Cycle 0
was predicted as Xm, and the best 10 individuals were random-
mated to form Cycle 1. The same procedure was repeated in
each cycle until Cycle 4 was obtained, with the X matrices being
updated in each cycle but with the marker effects (m) being the
same as those in Cycle 0. The population size and number of
individuals selected were constant in each cycle.

The accuracy of genomewide prediction was assessed as the
correlation between marker-predicted and true genotypic val-
ues (r,,,)- The selection response was obtained as the difference
between the genotypic mean of the Nindividuals in a given cycle
and the genotypic mean at Cycle 0, divided by the square root of
V- Relative efficiency was calculated as the selection response
when one or more major genes had a fixed effect (K > 1) divided
by the selection response when none of the major genes had a
fixed eftect (K = 0) in RR-BLUP. The frequency of each major

gene was calculated in each cycle. For each criterion (r,,,, selec-

tion response, relative efficiency, and gene frequency), It\/ilpe mean
and standard error were calculated across the 1000 repeats of a
simulation experiment. The standard errors were used to con-
duct pairwise z-tests or to calculate least significant differences

(P = 0.05) for each criterion.

RESULTS AND DISCUSSION
Gains from Multiple Cycles of Genomewide
Selection with a Single Major Gene
Having a fixed effect for a major gene became more advan-
tageous in genomewide selection as the R? value of the
major gene and the h? of the trait increased (Table 1).
When a major gene accounted for R* = 50% of V, and h?
was 0.80, the relative efficiency (based on selection gains in
Cycle 4) with a major gene having a fixed versus random
effect was 112% with N = 250 and 121% with N = 100.
The relative efficiency was always significantly greater
(P = 0.05) than 100% with R*> > 25% and h*> > 0.50.
However, when h? was low (0.20), there was no advan-
tage in considering a single major gene as having a fixed
effect in genomewide selection. Even when the major gene
accounted for R* = 50% of 1/, the relative efficiency with
the major gene having a fixed versus random effect was
not significantly different from 100%. These results suggest
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Table 1. Relative eflciency (mean across 1000 repeats) of
genomewide selection when a single major gene had a "xed
effect versus a random effect.

h2

N R? 0.20 0.50 0.80

250 50 101 106* 12*
33 99 103* 107~
25 101 102* 105*
17 100 101 103*
10 99 100 102*
5 99 100 101*

100 50 99 107* 1217
33 99 103* 114~
25 101 103* 11*
17 100 100 106*
10 99 100 103*
5 97* 99 101

* Signil cantly different (P = 0.05) from 100% based on 1000 repeats.

N, population size; R?, percentage of V; explained by a major gene; h?, heritability
on an entry-mean basis. The h? values were based on the genetic variance due to
the minor quantitative trait loci only.

Ratio between the response at Cycle 4 when the major gene had a [ xed effect
and the response at Cycle 4 when the major gene had a random effect, along
with the remaining genomewide markers, in ridge regression( best linear unbiased
prediction.

that the R? value of a major gene is a meaningful crite-
rion in genomewide selection only when h? is moderate to
high. Furthermore, the h? values in Table 1 are based on the
effects of the 100 minor QTL only and are lower than the
h? for the trait as a whole. As previously mentioned in the
Materials and Methods, h* was scaled according to the 17, at
the minor QTL only so that the nongenetic variance for the
trait was constant regardless of the contribution of the sin-
gle major gene to the total V.. When h? is calculated based
on the I, due to both the minor QTL and the single major
gene, the h? of 0.20 in Table 1 corresponds to h* = 0.33 for
the trait as a whole with R = 50%, to h*> = 0.25 for the trait
as a whole with R? = 25%, and to h?* = 0.22 for the trait as
a whole with R? = 10%. These higher values of h*> should
be considered when comparing the results in Table 1 to
reports in the literature of R? values for a major gene and
h? for the trait.

As N decreased, it became more advantageous to con-
sider a major gene as having a fixed effect instead of a ran-
dom effect. Consider a major gene with R? = 50% and h*
= 0.80. The corresponding relative efficiencies were 112%
with N =250 and 121% with N = 100 (Table 1). The actual
gains with N'= 250 (in units of the square root of 1, due to
the minor QTL) were 6.10 when the major gene had a fixed
effect and 5.45 when the major gene had a random effect.
The advantage of considering a fixed effect for the major
gene was therefore 6.10 — 5.45 = 0.65 when expressed as
a difference, and 6.10/5.45 = 112% when expressed as a
percentage. The actual gains with N = 100 were 4.85 when
the major gene had a fixed effect and 4.02 when the major
gene had a random effect. Compared with the results for
N = 250, the advantage of considering a fixed effect for

the major gene was therefore larger when expressed both
as a difference (4.85 — 4.02 = 0.83) and as a percentage
(4.85/4.02 = 121%). It is speculated that when both R? and
h? are high, a population size of N = 100 may be largely
sufficient for estimating the effect of a single major gene.
However, a larger population is known to lead to better
predictions of genomewide marker effects (Daetwyler et al.,
2008; Lorenzana and Bernardo, 2009). A minimal advan-
tage of N = 250 over N = 100 for estimating the effect of
a major gene and a substantial advantage of N = 250 over
N = 100 for predicting genomewide marker effects would
lead to a higher relative efficiency when N is low (Table 1).

While specifying a fixed effect for a single major gene
was most advantageous when /? and R? were both high,
doing so was never disadvantageous except when h?, R?,
and N were all low. In particular, with h? = 0.20, R? = 5%,
and N = 100, the relative efficiency of specifying a fixed
versus random effect for the major gene was 97% (Table
1). This 3% decline in the relative response was statistically
significant and the underlying conditions of low h?, low
R?, and small N are the same conditions that render QTL
mapping ineffective (Lande and Thompson, 1990).

Overall, specifying a fixed effect for a single major gene
was never disadvantageous except when R? < 10%. The
results for gains from multiple cycles of genomewide selec-
tion therefore suggest the following rule-of-thumb: assum-
ing that the estimates of R? are accurate, a major gene can
be safely specified as having a fixed effect when the R? value
for the gene is at least 10%.

Accuracy of Genomewide Prediction
with a Single Major Gene
If genomewide selection with a given prediction equation is
to be performed for only one cycle, the correlation between
marker-predicted and true genotypic values (r,,;) in Cycle
0 is more meaningful than the response to multiple cycles of
genomewide selection. With h* > 0.50, specifying a fixed
versus random effect for a single major gene had little effect
on r,,,. With a moderate to high /?, the .
fixed versus random effects for a single major gene differed
by only 0.00 to 0.03 across different values of R?> and N
(Table 2). These small differences in prediction accuracy
were consistent with previous results for the DGAT gene
in dairy cattle (Bos taurus). The DGAT gene had an R? of
51% for milk fat in dairy cattle (Grisart et al., 2002), and
the correlation between marker-predicted values and phe-
notypic values was 0.38 when the DGAT gene was assumed
to have a random effect and 0.39 when the DGAT gene was
assumed to have a fixed effect (Hayr et al., 2013).
Furthermore, the above results for the DGAT gene were
obtained with a Bayes C model for genomewide marker
effects (Hayr et al., 2013) whereas the results from the cur-
rent study were obtained by RR-BLUP. The small differ-
ences in the correlations with fixed versus random effects

values with
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Table 2. Correlation between marker-predicted and true genotypic values (r,,;) in Cycle 0, frequency of the major gene in Cycle
1 (p¢4) and frequency of the major gene in Cycle 4 (p.,) when a single major gene had a [xed effect versus a random effect.

Results are the means of 1000 repeats.

h2=0.20 h2=0.50 h2=0.80

N R? Criterion Fixed Random Fixed Random Fixed Random
250 50 Mvie 0.86 0.82 0.98 0.96 1.00 0.99
Pey 1.00 0.90 1.00 1.00 1.00 1.00
Pca 1.00 1.00 1.00 1.00 1.00 1.00
33 Mvie 0.80 0.78 0.96 0.94 0.99 0.98
Pey 0.98 0.83 1.00 0.98 1.00 1.00
Pca 1.00 0.98 1.00 1.00 1.00 1.00
25 " 0.77 0.77 0.95 0.92 0.99 0.98
Pey 0.95 0.80 0.99 0.96 1.00 1.00
Pca 1.00 0.97 1.00 1.00 1.00 1.00
17 Mvie 0.75 0.75 0.93 0.91 0.98 0.97
Pey 0.91 0.73 0.98 0.92 0.99 0.98
Pca 0.98 0.93 1.00 1.00 1.00 1.00
10 " 0.72 0.74 0.91 0.90 0.97 0.97
Pey 0.85 0.69 0.94 0.86 0.97 0.94
Pca 0.96 0.87 1.00 0.99 1.00 1.00
5 Mvie 0.70 0.73 0.89 0.88 0.96 0.96
Pey 0.76 0.62 0.86 0.77 0.91 0.88
Pca 0.87 0.78 1.00 0.96 1.00 1.00
100 50 " 0.81 0.73 0.96 0.94 0.99 0.99
Pcy 0.99 0.81 1.00 0.98 1.00 1.00
Pca 1.00 0.98 1.00 1.00 1.00 1.00
33 Mvie 0.73 0.69 0.94 0.91 0.99 0.98
Pey 0.96 0.74 1.00 0.94 1.00 1.00
Pca 1.00 0.94 1.00 1.00 1.00 1.00
25 " 0.68 0.67 0.92 0.89 0.98 0.97
Pey 0.93 0.71 0.99 0.90 1.00 0.98
Pca 0.98 0.90 1.00 1.00 1.00 1.00
17 Mvie 0.63 0.65 0.89 0.87 0.97 0.97
Pey 0.88 0.66 0.96 0.85 0.98 0.96
Pca 0.95 0.84 1.00 0.99 1.00 1.00
10 " 0.59 0.64 0.86 0.85 0.96 0.95
Pey 0.81 0.63 0.91 0.79 0.95 0.90
Pca 0.89 0.77 1.00 0.97 1.00 1.00
5 Mvie 0.55 0.63 0.84 0.83 0.95 0.94
Pey 0.72 0.58 0.83 0.71 0.87 0.82
Pca 0.79 0.69 0.98 0.91 1.00 0.99

N, population size; R?, percentage of V, explained by a major gene; h?, heritability on an entry-mean basis. The h? values were based on the genetic variance due to the

minor quantitative trait loci only.

The approximate least signi' cant difference (P = 0.05) was 0.01 for r,,, pc,, and pg,-

for a major gene, in both the Hayr et al. (2013) study and in
the current study, suggested that the method for calculating
random effects of genomewide markers has little influence
on the impact of having a fixed effect for the major gene.
With /2 > 0.50, the "G when the major gene had a fixed
effect was never less than the r,, . when the major gene had
a random effect (Table 2). With h* = 0.20, specifying a fixed
versus random effect for a single major gene sometimes had a
large effect on r,, .. With h?=0.20, R> = 50%, and N = 100,
rue Was 0.81 when the major gene had a fixed effect and
0.73 when the major gene had a random effect. When both
h* and R* were low, r,, . was lower when the major gene had
a fixed effect instead of a random effect. For example, the
Iy for a major gene with 1% = 0.20, R? = 10%, and N = 100
was 0.59 when the major gene had a fixed effect and 0.64

when the major gene had a random effect (Table 2). Such
differences in r,;,
cycle of genomewide selection: with h> = 0.20, R* = 5%,
and N = 100, the gain from the first cycle genomewide
selection was slightly but significantly lower when the major
gene had a fixed effect (gain of 1.06) than when the major
gene had a random effect (gain of 1.13).

The results also indicated that the r,,. in Cycle 0 could
not be used as the basis for deciding if a major gene should
have a fixed effect or random effect during multiple cycles
of genomewide selection. Consider a major gene with R* =
50% and h* = 0.80. Fitting a fixed effect for the major gene
led to high relative efficiencies of 112 to 121% under these
conditions (Table 1). However, the r, . in Cycle O under these
conditions was 0.99 to 1.00 regardless of whether or not the

were reflected in the response to the first
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major gene had a fixed effect. The r,, . values then declined
with each cycle of genomewide selection. With N = 250, the
"'ye Values when the major gene (R* = 50% and h* = 0.80)
had a fixed effect were 1.00 in Cycle 0, 0.83 in Cycle 1, 0.74
in Cycle 2, and 0.65 in Cycle 3. The corresponding r,, . val-
ues when the major gene had a random effect were 1.00 in
Cycle 0, 0.66 in Cycle 1, 0.56 in Cycle 2, and 0.47 in Cycle
3. The r,,, values therefore declined more rapidly when the
major gene had a random instead of a fixed effect.

The rate of decline in linkage disequilibrium from Cycle
0 to 4 is expected to be largely due to N,, and the num-
ber of individuals selected in each cycle. Because N,, and the
number of selected individuals were the same regardless of
whether a major gene had a fixed versus random effect, the
difference in the rate of decline in ;. could not be attributed
to a difference in the rate of decline in linkage disequilibrium.
The r,,, values therefore reflected differences in the ability
to capture the effects due to minor QTL at the later cycles
of selection when a major gene had a fixed versus random
effect, particularly after the major gene had become homo-
zygous or near homozygous at an earlier cycle of selection
(Combs and Bernardo, 2013). However, the breeding scheme
simulated in this study and implemented in maize by Mass-
man et al. (2013) and Combs and Bernardo (2013) involved
constructing a genomewide prediction equation in Cycle 0O
followed by successive generations of marker-based selection
in a greenhouse or year-round nursery. Because of the lack
of phenotyping in each cycle, the decline in r,,, cannot be
monitored in practice under the breeding scheme used.

Changes in Frequency of a Single
Major Gene
A major gene has a larger estimated effect if the major gene
has a fixed effect instead of a random effect. The larger effect
when the major gene is assumed fixed then leads to a stron-
ger selection pressure on the major gene, and this stronger
selection pressure led to larger changes in gene frequency
when the major gene had a fixed versus random eftect. The
frequency of the major gene in Cycle 1 (p..,) indicated that
one cycle of genomewide selection led to homozygosity or
near-homozygosity of the major gene when R? and h? were
both high, regardless of whether the major gene had a fixed
or random effect (Table 2). Genomewide selection is a form
of index selection on multiple markers, and index selection
is expected to be superior to tandem selection (Hazel and
Lush, 1942). Tandem selection by first selecting for a major
gene followed by genomewide selection for minor QTL
(among individuals fixed for the major gene) was therefore
not considered in this study. The high values of p., nev-
ertheless indicated that in terms of fixing a known major
gene, genomewide selection was largely equivalent to tan-
dem selection when R? and h* were both high.

With R? > 10% and h* > 0.50, the frequency of the
major gene in Cycle 4 (p_.,) approached or was equal to 1.00.

These high p_., values indicated that the differences in selec-
tion responses in Cycle 4 when a major gene had a fixed
versus random effect (Table 1) were not largely due to the
major gene itself, but were due to the genomewide markers
being able to better capture the effects at minor QTL when
the effect of the major gene was modeled separately from the
effects of the background QTL (Combs and Bernardo, 2013).

Both p., and p., were lower with h> = 0.20 than with
h* > 0.50 (Table 2). Across different values of R* and N, p,
with h? = 0.20 was 0.72 to 1.00 when the major gene had a
fixed effect and 0.58 to 0.90 when the major gene had a ran-
dom effect. The corresponding p ., values were 0.79 to 1.00
when the major gene had a fixed effect and 0.69 to 1.00 when
the major gene had a random effect. As previously mentioned,
assuming a major gene had a fixed instead of random effect led
to a 3% decrease in relative efficiency with N = 100, R? = 5%,
and i* = 0.20. Under these conditions, p., was 0.79 when the
major gene had a fixed effect and 0.69 when the major gene
had a random effect. When N, /2, and R? were all low, the
higher selection gain when the major gene had a random effect
was therefore largely due to the minor QTL.

Genomewide Selection with Multiple

Major Genes

The general results obtained for genomewide selection with
a single major gene were also obtained for genomewide
selection with multiple major genes. However, the results
also indicated difficulty in simultaneously estimating the
fixed effects of more than a few major genes.

When L > 1 major genes were present, the L major
genes jointly accounted for 50% of 1/, in the simulation
experiments. It is therefore meaningful to compare the
relative efficiency with L > 1 major genes versus the rela-
tive efficiency with L = 1 major gene that explained R?> =
50% of V.. With N = 250, the highest relative efficiency
with L = 1 major gene (112%, R? = 50%, h*> = 0.80; Table
1) was equal to the highest relative efficiency with L = 2
or 3 major genes (112%, h*> = 0.80, K = L; Table 3). This
result indicated that when N was large and h* was high, it
did not matter in terms of relative efficiency whether the
major gene effects were concentrated in a single major gene
or were partitioned across L = 2 or 3 unlinked major genes.

The above result was not obtained when the popula-
tion size decreased to N = 100. In this situation, the highest
relative efficiencies with L = 2 or 3 major genes (116—119%,
K= L, h*=0.80; Table 3) were slightly lower than the highest
relative efficiency with a single major gene (121%, R* = 50%,
h? = 0.80; Table 1). The above result was also not obtained
when L = 10 unlinked major genes controlled the trait. The
L =10 major genes likewise jointly accounted for 50% of 1,
yet the relative efficiency did not exceed 105% when all or a
subset of the 10 major genes had a fixed effect (Table 3). The
usefulness of having fixed versus random effects for multiple
major genes decreased further as h* decreased.
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Table 3. Relative ef ciency (mean across 1000 repeats) of
genomewide selection when multiple major genes had "xed
effects versus random effects.

No. of h?
No. of major genes
major  with [xed

N- genes (L) effects (K) 0.20 0.50 0.80
250 2 2 100 103 12
2 1 100 103 107
LSD 1.2 1.0 1.0

3 3 100 104 12

3 2 99 103 109

3 1 100 102 105
LSD 1.2 1.0 1.0

10 10 102 100 103
10 9 102 101 104
10 8 102 101 103
10 7 102 101 103
10 6 102 102 103
10 5 101 101 102
10 4 101 101 102
10 3 101 101 101
10 2 101 100 101
10 1 101 100 101
LSD 1.5 1.2 1.2

100 2 2 102 106 119
2 1 100 104 110
LSD 1.7 14 14

3 3 103 103 116

3 2 102 103 112

3 1 100 101 106
LSD 1.7 1.3 14

10 10 103 101 103
10 9 100 102 105
10 8 100 103 104
10 7 99 103 104
10 6 99 103 104
10 5 99 102 103
10 4 100 102 102
10 3 99 101 102
10 2 100 101 101
10 1 100 101 100
LSD 2.3 1.6 1.5

N, population size; h?, heritability on an entry-mean basis. The h? values were
based on the genetic variance due to the minor quantitative trait loci only.

Ratio between the response at Cycle 4 when K major genes had 'xed effects
and the response at Cycle 4 when all L major genes had random effects, along
with the remaining genomewide markers, in ridge regression( best linear unbiased
prediction.

Approximate least signilcant difference at P = 0.05.

These results regarding the low relative efficiency of
genomewide selection with L = 10 major genes with fixed
effects were consistent with the known difficulties in QTL
mapping and in incorporating gene information to predict
performance when both N and /2 are low. In a simulation
experiment with 10 unlinked QTL controlling the trait
(with no background QTL) and h* = 0.30, the power to
detect QTL was only 12% with N = 100 and the effects of
the QTL were overestimated (Beavis, 1994). With N = 500
and L = 50 QTL controlling the trait, selection based on
gene information for all 50 QTL was 5% less efficient than

phenotypic selection, to the extent that it was more advan-
tageous to ignore the genes with smaller effects even when
the identity of such genes was known (Bernardo, 2001).

Application in a Breeding Program

The main conclusion from this study is that when a few (1-3)
major genes are present for a quantitative trait and each major
gene accounts for >10% of 1/, these major genes should be
fitted as having fixed effects instead of random effects in the
genomewide prediction model. The effects of the remaining
genomewide markers can then be fitted by RR-BLUP, with
the variance of marker effects being adjusted for the contribu-
tions of the major genes to ;. Having fixed effects for major
genes may not always increase the response to genomewide
selection, particularly when h? is low. However, having fixed
effects for major genes would lead to no harm because the
gains from genomewide selection would at least be as large
as those obtained when the major genes are not treated any
differently from the genomewide markers.

Having known major genes implies that prior estimates
of their effects are also available, and these prior estimates
could be used in the first step of the procedure used in this
study for estimating V.. On the other hand, obtaining ad
hoc estimates of the effects of known major genes, as was
done in this study, would help account (i) for any differences
in the effects of major genes across different populations or
genetic backgrounds (Pumphrey et al., 2007) and (i1) for cor-
relations between the effects of major genes and of unknown
minor QTL thatare in linkage disequilibrium with the major
genes. While a two-step procedure was used to estimate V7,
in this study, any procedure that leads to good estimates of
V. should suffice. For example, a one-step, mixed-model
approach can be used to estimate 1, when known major
genes are present (Kennedy et al., 1992).

In this study, the R? values for major genes were known
without error and were expressed in terms of the 17, explained
by each major gene. In practice, the eftect of a major gene
is usually expressed as the percentage of phenotypic vari-
ance (V) explained by the gene and needs to be estimated
from experimental data. Suppose the h? is 0.60 for the trait
as a whole (i.e., based on the contributions of both the minor
QTL and a single major gene to 17.). In this situation, a major
gene with R? = 33% in this study explained 0.60(0.33) =
20% of 17, This result means that an estimated R? value,
reported in the literature and expressed in terms of 1/, theo-
retically would be lower than the corresponding R? values in
this study. On the other hand, the effects of genes are often
overestimated in QTL mapping experiments (Beavis, 1994;
Schoén et al., 2004) and estimates in the literature of the per-
centage of I, explained by each major gene may be inflated.

Major genes for quantitative traits in crops are not
uncommon. In wheat, the Fhb1 QTL for Fusarium head
blight resistance explained of 25 to 42% of I, (Anderson et
al., 2001) and reduced disease severity by 25 to 32% among
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near-isogenic lines (Pumphrey et al.,, 2007; Agostinelli et
al., 2012). In maize, the DGAT gene for kernel oil explained
26% ot V, (Garcia, 2008). The rd1 maize dwarfing gene
explained 63% of 1/, and, in homozygous form, decreased
plant height by about 31 ¢cm (Combs and Bernardo, 2013).
In soybean, the rhgl gene for resistance to soybean cyst nem-
atode explained 35 to 54% of 1/, (Concibido et al., 1996).
The results from this study suggest that when genomewide
selection involves any of these major genes or other major
genes that similarly have large effects, the markers for such
genes should have fixed instead of random effects.
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