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ORIGINAL RESEARCH

Genomewide Markers for Controlling Background 
Variation in Association Mapping

Rex Bernardo*

Abstract
Current procedures for association mapping in plants account 
for population structure (Q) and kinship (K). Here I propose an 
association mapping procedure that uses genomewide markers 
(G) to account for quantitative trait loci (QTL) on background 
chromosomes. My objective was to determine if the G and 
QG models are superior to the K and QK models. I simulated 
mapping population sizes of N = 384, 768, and 1536 inbreds 
that belonged to three known subpopulations. The G and QG 
models showed the best adherence to the signifi cance level (P) 
specifi ed by the investigator for declaring QTL. Across different 
genetic models (15 or 30 QTL), population sizes, and P levels, 
the Q model suffered from a high number of false positives 
(NFP). With the K and QK models, a relaxed P level led to a 
reasonable number of true QTL detected (NTQ) with N = 384 
or 768 but it led to high NFP with N = 1536. Compared with 
the K and QK models, the G and QG models had a better 
balance between high NTQ and low NFP. The results strongly 
indicated that the G and QG models are superior to the K and 
QK models.

ASSOCIATION MAPPING enables the discovery of 
marker–trait associations in a collection of indi-

viduals instead of in a designed mapping population 
(Hästbacka et al., 1992; Risch and Merikangas, 1996). In 
plants, collections of inbreds that are typically used in 
association mapping do not constitute a single random-
mating population (Remington et al., 2001; Th ornsberry 
et al., 2001; Zhu et al., 2008) and the resulting population 
structure and kinship (or relatedness) among inbreds can 
lead to spurious marker–trait associations (Devlin and 
Roeder, 1999; Pritchard et al., 2000; Th ornsberry et al., 
2001; Yu et al., 2006; Eathington et al., 2007). Diff erent 
methods to account for population structure have been 
proposed (Pritchard et al., 2000; Devlin et al., 2001) and 
the QK mixed-model method has emerged as a useful 
approach to account for both population structure (Q) 
and kinship (K) in diverse panels of inbreds (Yu et al., 
2006; Stich et al., 2008).

In particular, the QK model and the related K model 
(kinship only) for association mapping use random 
markers across the genome to estimate kinship among 
individuals (Yu et al., 2006). Th e QK model and K model 
both include the eff ect of one marker being tested for 
signifi cance and a polygenic background eff ect for each 
individual. Specifying kinship exploits information from 
relatives in estimating polygenic background eff ects and 
such polygenic eff ects, in turn, improve the estimate of 
marker–trait association for each marker being tested 
(Yu et al., 2006).
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An alternative to estimating polygenic background 
eff ects as specifi ed in the QK model or K model is to use 
random markers not to estimate kinship but to directly 
estimate background marker eff ects. Such an approach 
would use methods for using large numbers of markers in 
genomewide selection (or genomic selection) (Meuwissen 
et al., 2001). Many simulation and empirical results have 
shown the eff ectiveness of genomewide selection for 
modeling the sum of eff ects of unknown quantitative trait 
loci (QTL) across the genome (Meuwissen et al., 2001; 
Bernardo and Yu, 2007; Lorenzana and Bernardo, 2009; 
Hayes and Goddard, 2010; Albrecht et al., 2011; Asoro et 
al., 2011; Heff ner et al., 2011; Iwata and Jannink, 2011; Guo 
et al., 2012; Heslot et al., 2012; Schulz-Streeck et al., 2012). 
Estimates of marker eff ects in association mapping would 
be improved if background eff ects are better estimated 
via a genomewide selection framework (Meuwissen et al., 
2001) than via kinship in the QK model or K model (Yu et 
al., 2006).

In a previous study, I have shown the usefulness 
of a QTL mapping approach that involves estimating 
genomewide background eff ects among recombinant 
inbreds developed from a single biparental cross 
(Bernardo, 2013). In this study, I extend such approach to 
association mapping in a diverse set of inbreds that have 
both population structure and kinship. In particular, the 
G model accounts for genomewide background eff ects 
whereas the QG model accounts for both population 
structure and genomewide background eff ects. My 
objective in this study was to determine if the G and QG 
models are superior to the K and QK models commonly 
used for association mapping in plants.

MATERIALS AND METHODS
Overview
Six association mapping procedures were compared: (i) 
simple model, (ii) Q model, (iii) K model, (iv) QK model, 
(v) G model, and (vi) QG model. Th e simple, Q, K, and 
QK models were as described by Yu et al. (2006).

Th e simulation procedures used in this study were 
largely identical to those previously described for QTL 
mapping (Bernardo, 2013), with the main diff erence 
being that the simulated inbreds in this study belonged 
to three subpopulations whereas the simulated inbreds in 
the Bernardo (2013) study were all derived from the same 
cross. For the reader’s convenience, descriptions of the 
simulation procedures are repeated herein.

Mapping Population, Genetic Models, 
and Phenotypic Values
Each simulation experiment comprised a combination 
of genetic model, total size of mapping population (N), 
and signifi cance level (P) for declaring a QTL. Each 
simulation experiment was repeated 400 times for N = 
384, 200 times for N = 768, and 100 times for N = 1536. 
Each repeat diff ered in the location of QTL and in the 
genotypes, genotypic values, and phenotypic values of 

the inbreds. I wrote a Fortran program to conduct the 
simulations and data analysis.

Of the N inbreds, one-third belonged to each of 
three subpopulations. A simulated F

1
 generation was 

fi rst formed by crossing two founder inbreds and all 
individuals in the fi rst subpopulation descended from 
this F

1
 generation. Th e F

1
 was then backcrossed to the 

fi rst founder inbred to form a BC
1
 generation, and all 

individuals in the second subpopulation descended from 
this BC

1
 generation. Lastly, the F

1
 was backcrossed to the 

second founder inbred to form the complementary BC
1
 

generation, and all individuals in the third subpopulation 
descended from this BC

1
 generation.

Th e individuals within each of the three subpopulations 
were generated to mimic the inbred recycling that occurs 
in a breeding program (Bernardo, 2009). Of the N/3 
individuals within each subpopulation, 10% were fi rst-
cycle inbreds, 20% were second-cycle inbreds, 30% were 
third-cycle inbreds, and 40% were fourth-cycle inbreds. 
Th e fi rst-cycle inbreds were derived by seven generations of 
selfi ng from the initial generation of the subpopulation (F

1
 

or either of the two BC
1
 crosses). Th e second-cycle inbreds 

were developed by single-seed descent from random pairs 
of crosses among the fi rst-cycle inbreds. Only one second-
cycle inbred was retained per cross, with this inbred 
being the fi rst random inbred with a genotypic mean that 
exceeded the genotypic mean of at least one of its parental 
inbreds. Th e third- and fourth-cycle inbreds were developed 
in the same manner from pairs of crosses among inbreds in 
the preceding cycle. Th e subpopulation assignments of all N 
inbreds were therefore known based on pedigree.

Th e two founder inbreds diff ered at number of 
markers (N

M
) = 768 codominant marker loci, with 

this number of loci being greater than the 533 single 
nucleotide polymorphism markers considered by Yu 
et al. (2006) in maize (Zea mays L.). Th e sizes of the 
10 chromosomes and of the entire genome (1749 cM) 
corresponded to those in a published maize linkage map 
(Senior et al., 1996). Th e genome was divided into N

M
 

bins that were 1749/N
M

 cM in size. A marker was located 
at the midpoint of each bin.

I assumed that the purpose of association mapping 
was to fi nd marker–trait associations for a less-complex 
trait that would tend to have several QTL with large 
eff ects (Bernardo, 2008), and the trait was controlled 
by number of QTL (L) = 15 QTL with a narrow-sense 
heritability (h2) of 0.80 or by L = 30 QTL with an h2 of 
0.70. Th e fi rst founder inbred had the favorable allele at 
odd-numbered QTL and the second founder inbred had 
the favorable allele at even-numbered QTL. Th e L QTL 
were randomly located among the 10 chromosomes. 
Th e sizes of QTL eff ects followed a geometric series 
(Lande and Th ompson, 1990; Bernardo and Yu, 2007). 
Dominance and epistasis were absent, and the genotypic 
value of an inbred was equal to the sum of its genotypic 
values across all L QTL.

Th e h2 was defi ned relative to a population of 
random recombinant inbreds derived from the F

2
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between the two founder inbreds. Genetic variance (V
G
) 

in a given repeat of a simulation experiment was fi rst 
calculated as the variance among genotypic values (i.e., 
h2 = 1.0) of 400 recombinant inbreds. Th e N = 384, 768, 
or 1536 inbreds in the simulation experiments were 
assumed to have been evaluated in eight environments 
with one replication in each environment. Phenotypic 
values were obtained by adding a random nongenetic 
eff ect to the genotypic value of each recombinant inbred 
in each environment. Th e nongenetic eff ects were 
normally and independently distributed with a mean of 
zero and a nongenetic variance of V

E
. Th e V

E
 was scaled 

to achieve a target entry-mean h2 of 0.70 (for L = 30 QTL) 
or 0.80 (for L = 15 QTL) among F

2
–derived recombinant 

inbreds. Th ese values of V
E
 and V

G
 were used in the 

subsequent analyses for the K, QK, G, and QG models.

Models with Population Structure and Kinship
In the simple model, the mean performance (across envi-
ronments) of the N inbreds was modeled as y = 1μ + Sα + e, 
in which y was an N × 1 vector of means of the N inbreds, 
μ was the grand mean, α was the eff ect of the marker allele 
from the fi rst founder inbred at the kth marker being tested, 
e was an N × 1 vector of residuals, 1 was an N × 1 vector of 
1s, and S was an N × 1 incidence vector that related α to y. 
Th e elements of S were 1 if the inbred was homozygous for 
the allele from the fi rst founder inbred, –1 if the inbred was 
homozygous for the allele from the second founder inbred, 
and 0 if the inbred was heterozygous at the marker locus. 
Th e simple model therefore represented the most basic 
single-marker analysis and did not account for population 
structure or polygenic background eff ects. Th e marker 
eff ect was assumed as fi xed, and the analysis for the simple 
model (as well as for the Q, K, and QK models described 
below) was repeated until each of the N

M
 = 768 markers had 

been tested in single-marker analysis.
Th e Q model, which included population structure, 

was y = 1μ + Sα + Qv + e, in which v was a vector of 
eff ects for two orthogonal contrasts that, along with 
μ, captured the diff erences among the means of the 
three subpopulations and Q was an N × 2 incidence 
matrix that related v to y (Yu et al., 2006). Eff ects of 
subpopulations were assumed as fi xed. As previously 
mentioned, the subpopulation assignments of the N 
inbreds were assumed known without error in all models 
that involved population structure. Th e K model, which 
included polygenic background eff ects, was y = 1μ + Sα 
+ Zu + e, in which u was an N × 1 vector of polygenic 
background eff ects for the inbreds and Z was an N × N 
incidence matrix that related u to y. In the K model, V(u) 
= KV

G
, in which K, the kinship matrix, had elements 

equal to twice the marker-based coeffi  cient of coancestry 
among the N inbreds. Given that all N

M
 markers were 

polymorphic between the two founder inbreds, the 
elements of K were directly estimated as twice the simple 
matching coeffi  cient, across all N

M
 loci, between the two 

marker alleles carried by one inbred and the two marker 
alleles carried by a second inbred. Th e QK model, which 

included population structure and polygenic background 
eff ects, was then y = 1μ + Sα + Qv + Zu + e.

For each simulation experiment and for each repeat, 
mixed-model equations were used to obtain solutions 
to the simple, Q, K, and QK linear models (Henderson, 
1984; Yu et al., 2006; Stich et al., 2008). A t test was used 
for testing the eff ect of the kth marker at comparison-
wise signifi cance levels of P = 0.0001, 0.00001, and 
0.000001. With N

M
 = 768 markers, these signifi cance 

levels to corresponded to pre-Bonferroni, experiment-
wise Type I error rates (ignoring correlations among 
markers) ranging from 0.000768 to 0.0768. In addition, 
the results suggested that a relaxed signifi cance level may 
be best for the K and QK models. A signifi cance level of 
P = 0.001 was also used for the K and QK models.

Models with Genomewide Markers
Th e G model combined multiple regression for a given 
chromosome and adjustment for genomewide marker 
eff ects at the remaining chromosomes (Bernardo, 2013). 
Genomewide marker eff ects across all N

M
 = 768 markers 

were fi rst calculated by ridge regression-best linear unbi-
ased prediction (RR-BLUP) as described by Meuwissen 
et al. (2001). Th e linear model in RR-BLUP was y = 1μ + 
Mg + e, in which g was an N

M
 × 1 vector of eff ects of the 

marker allele from the fi rst founder inbred and M was an 
incidence matrix (elements of 1, 0, or –1) that related g to 
y. Marker eff ects were assumed random and the variance 
of each marker eff ect in RR-BLUP was equal to V

M
 = V

G
/

N
M

 (Meuwissen et al., 2001).
Procedures for association mapping analysis with the 

G model comprised two steps. In the fi rst step, multiple 
regression by backward elimination was performed on a 
chromosome-by-chromosome basis (Bernardo, 2004, 2013) 
aft er having corrected for genomewide marker eff ects across 
all the other chromosomes not currently being analyzed 
for QTL. Adjustments for population structure were not 
made in the G model but were made in the QG model 
described in the next paragraph. Suppose 106 out of the N

M
 

= 768 markers were on chromosome 1. To detect QTL on 
chromosome 1, the phenotypic data were fi rst adjusted for 
the RR-BLUP genomewide marker eff ects of the 768 – 106 
= 662 markers found on chromosomes 2 to 10. With such 
per-chromosome adjusted data as the dependent variable, 
backward elimination was used to allow the examination of 
the full model (i.e., all 106 markers) for chromosome 1. Th e 
signifi cance level for retaining a marker in the model was P 
= 0.0001, 0.00001, or 0.000001. Th ese procedures were then 
repeated for each chromosome. In the second step (which 
was for obtaining fi nal estimates of marker eff ects but not 
for retesting the signifi cance of eff ects), multiple regression 
coeffi  cients were obtained by jointly analyzing all the 
markers found signifi cant in the per-chromosome analysis. 
Unadjusted phenotypic data were used as the dependent 
variable in this second step.

In contrast to the G model, the QG model 
included subpopulation eff ects in RR-BLUP analysis 
of genomewide marker eff ects, with the RR-BLUP 
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linear model being y = 1μ + Qv + Mg + e. In the per-
chromosome analysis in the QG model, corrections for 
background eff ects were for genomewide marker eff ects 
across all the other chromosomes not currently being 
analyzed for QTL as well as for v. Subsequent procedures 
for calculating marker eff ects were then identical 
between the G and QG models.

Data Analysis and Control of Type I Error Rate
For each of the six association mapping procedures, a 
false positive was declared when the kth marker was sig-
nifi cant but no QTL was present in either of the marker’s 
adjacent intervals (Doerge et al., 1994; Whittaker et al., 
1996). A true QTL was declared to have been detected 
when a QTL had a signifi cant left  fl anking marker, a 
signifi cant right fl anking marker, or both fl anking mark-
ers as signifi cant. Th e numbers of false positives, true 
QTL detected, and signifi cant markers were averaged 
across all repeats for each simulation experiment and 
association mapping method. Variances across repeats 
were pooled across methods and were used to calculate 
approximate LSDs at P = 0.05. Th e lowest number of 
repeats (100) was used in calculating approximate LSDs.

To determine how well each of the six association 
mapping procedures adhered to the specifi ed signifi cance 
level, simulations were conducted for the 30 QTL, h2 = 
0.70 genetic model with the restrictions that (i) all 30 
QTL were located on chromosome 1 and (ii) p-values 
of tests of the null hypothesis were obtained only for 
markers on chromosomes 2 to 10. By not obtaining 
p-values from chromosome 1, the simulations therefore 
satisfi ed the conditions that the null hypothesis of no 
linkage with QTL was true for all the markers considered 
(i.e., on chromosomes 2 to 10) and V

G
 was greater than 

zero (i.e., V
G
 = 0 if no QTL were simulated) for the K, 

QK, G, and QG models. Th e Kolmogorov-Smirnov test 
(P = 0.01) was used to determine if the empirical p-values 
followed a uniform distribution. Th e simulations were 
repeated 100 times and the frequency of nonuniform 
distributions of p-values and mean of the Kolmogorov-
Smirnov test statistic across repeats was calculated.

RESULTS AND DISCUSSION
Control of Type I Error Rate
When the null hypothesis is true, p-values are expected 
to follow a uniform distribution (Murdock et al., 2008). 
Nonuniform p-values of markers would indicate that 
the actual Type I error rate is unequal to the signifi cance 
level specifi ed by the investigator for declaring a QTL. 
Simulations for which the null hypothesis of no QTL 
present was true indicated that, among the six associa-
tion mapping procedures, the G and QG models had the 
best adherence to the nominal Type I error rate (Table 1). 
With population sizes of N = 384 or 768, the percentage 
of simulation repeats for which the p-values had highly 
signifi cant deviations (P = 0.01) from a uniform distribu-
tion was 14 to 18% for the G and QG models. In contrast, 

the simple, Q, K, and QK models with N = 384 or 768 
had 99 to 100% of simulation repeats with nonuniform 
p-values. When N was increased to 1536, the percent-
age of simulation repeats with nonuniform p-values 
decreased to 56% for the K and QK models and increased 
to 28 to 29% for the G and QG models.

Th e Kolmogorov-Smirnov test statistic (K-S), which 
was used to test for uniformity of p-values, was equal 
to the maximum diff erence between the empirical 
distribution of p-values and the expected value from 
a uniform distribution. Large positive values of K-S 
indicated an excess of small p-values (i.e., liberal tests 
of signifi cance) whereas large negative values indicated 
an excess of large p-values (i.e., conservative tests of 
signifi cance). Th e mean K-S was 0.32 to 0.38 with the 
simple model and 0.21 to 0.23 with the Q model (Table 
1), indicating that these two models lead to an excess of 
false positives. Th e mean K-S with the G and QG models 
(0.03–0.05) was closest to the ideal value of zero. Th e 
mean K-S with the K and QK models was negative (–0.18 
to –0.14) with N = 384 or 768 and positive (0.17) with 
N = 1536. Th is result indicated that tests for marker–
trait associations with the K and QK models are too 
conservative with small N and too liberal with large N.

While Yu et al. (2006), Stich et al. (2008), and Stich 
and Melchinger (2009) showed plots of cumulative 
p-values, they did not conduct formal tests for deviations 
of the observed p-values from a uniform distribution 
and the null hypothesis in their empirical studies 
would not have been always true if QTL were detectable 
for the traits they studied. Nevertheless, the plots of 
cumulative p-values in these three previous studies did 
not seem entirely uniform for the following: (i) K model 
for TUBB2A gene expression in humans, Q, K, and QK 
models for fl owering time in maize, and Q model for 
ear height and ear diameter in maize (Yu et al., 2006), 
(ii) K and QK models for grain yield in maize (Stich et 
al., 2008), and (iii) K and QK models for diff erent traits 
in Arabidopsis thaliana (L.) Heynh., sugarbeet (Beta 
vulgaris L.), potato (Solanum tuberosum L.), and rapeseed 
(Brassica napus L.) (Stich and Melchinger, 2009).

True Quantitative Trait Loci Detected 
and False Positives
Across population sizes, genetic models, and signifi cance 
levels for declaring QTL, the simple model had the poorest 
performance in terms of the number of true QTL detected 
(N

TQ
) and the number of false positives (N

FP
) declared. 

Th e simple model had N
FP

 values that were 3 to 17 times as 
large as the corresponding N

TQ
 values (Table 2). As previ-

ously mentioned, the simple model does not account for 
population structure or polygenic background eff ects and, 
as other authors have indicated (Yu et al., 2006; Stich et al., 
2008; Stich and Melchinger, 2009), is not recommended.

Compared with the simple model, the Q model 
(which included population structure) had roughly 
the same N

TQ
 but had lower N

FP
 (Table 2). Such lower 

N
FP

 indicated that the Q model accounted for at least 
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a portion of the infl uence of population structure on 
marker–trait associations, and this result was consistent 
with the lower K-S with the Q model than with the 
simple model (Table 1). However, the N

FP
 values with the 

Q model still consistently exceeded the N
TQ

 values across 
simulation experiments.

Th e Q model attempts to account for population 
structure by modeling the diff erences in means of the 
subpopulations (v) for a given trait. To illustrate, suppose 
a maize mapping panel includes early-maturing fl int 
inbreds and late-maturing dent inbreds. Th e diff erence in 
mean days to maturity between the fl int and dent inbreds 
will lead to a nonzero v in the Q model, and the Q model 
will thereby account for the eff ect of population structure 
on days to maturity. In contrast, suppose that the fl int 
and dent inbreds have equal subpopulation means for 
stalk lodging. In this situation, v in the Q model for 
stalk lodging will be zero and the Q model consequently 
becomes equal to the simple model. In other words, 
while marker or pedigree data may clearly indicate 
the presence of subpopulations (e.g., fl int versus dent 
inbreds), the Q model cannot eff ectively account for the 
infl uence of subpopulations on estimates of marker–trait 
associations if the subpopulations have equal or similar 
means for the trait.

In this simulation study, the two founder inbreds 
complemented each other in the favorable QTL 
alleles they carried and therefore had similar mean 
performance. In terms of units of the genetic standard 
deviation [(V

G
)1/2], the fi rst founder inbred had a 

genotypic mean of 0.13 whereas the second founder 
inbred had a mean of –0.13. Discounting the eff ects 
of selection, the inbreds were then expected to have a 
mean of zero in the fi rst subpopulation (F

1
), 0.065 in the 

second subpopulation (BC
1
 to the fi rst founder inbred), 

and –0.065 in the third subpopulation (BC
1
 to the second 

founder inbred). Th ese similar subpopulation means 
rendered the Q model largely ineff ective.

Methods have been proposed for assigning inbreds 
to subpopulations based on marker information, for 
example, STRUCTURE soft ware (Pritchard et al., 2000) 
or principal components analysis (Price et al., 2006). 
Th ese two marker-based approaches for assigning 
inbreds to subpopulations were not attempted in this 
study. However, it is speculated that the large diff erences 
in frequencies (i.e., 0.50, 0.75, and 0.25) of the marker 
allele from the fi rst founder inbred among the three 
subpopulations would have led to subpopulation 
assignments similar to the pedigree-based assignments of 
the N inbreds. Furthermore, the lack of large diff erences 
among subpopulation means would likely have led to 
the Q model still being ineff ective even if STRUCTURE 
soft ware or principal components analyses were used. 
Th ese points underscore that, in practice, examining 
the putative or known subpopulations for diff erences in 
their mean performance for a given trait would be useful 
before deciding to use an association mapping model that 
incorporates the mean eff ects of subpopulations (i.e., v).

Because v had a minor eff ect, the K and QK models 
had similar values of N

TQ
 and of N

FP
 (Table 2). With N = 

384 or 768, the K and QK models led to N
TQ

 of 0.1 to 4.8 
and N

FP
 of 0.0 to 0.8 (Table 2). Increasing the population 

size to N = 1536 with the K and QK models led to higher 
N

TQ
 (5.1–9.2) but at the cost of higher N

FP
 (3.6–19.2). With 

N = 1536, the K and QK models had N
FP

 higher than N
TQ

 
when the least stringent signifi cance level (P = 0.0001) was 
used for declaring QTL. Th e low N

TQ
 at low N and high 

N
FP

 with high N were consistent with the K-S of the K and 
QK models at diff erent population sizes (Table 1).

Compared with the QK model (and the largely 
equivalent K model), the G and QG models led to higher 
N

TQ
 while maintaining N

FP
 within reasonable levels 

(Table 2). In particular, the G and QG models performed 
best at the largest population size and with stringent 
signifi cance levels for declaring a QTL. With N = 1536 
and P = 0.00001 or 0.000001, the G and QG models 
had N

TQ
 of 13.1 to 18.7 and N

FP
 of 0.9 to 2.8. When the 

population size was reduced to N = 384, the G and QG 
models with P = 0.00001 or 0.000001 had lower N

TQ
 

(4.5–7.5) and higher N
FP

 (1.7–4.5).
A scatterplot is useful for comparing the N

TQ
 and N

FP
 

values obtained with the G, QG, and QK models (Fig. 1). 
Th e results indicated that across population sizes, genetic 
models, and signifi cance levels, the G and QG models led 
to a better balance of maximizing N

TQ
 and minimizing 

N
FP

 compared with the QK model. Th e N
TQ

 with the QK 
model did not exceed 10 and these higher N

TQ
 values 

were accompanied by a high N
FP

. In contrast, N
TQ

 with 
the G and QG models approached 20 and N

FP
 did not 

exceed 6. Overall, both N
TQ

 and N
FP

 were slightly higher 
with the G model than with the QG model (Fig. 1).

Table 1. Control of the Type I error rate in simulations 
where the null hypothesis of no marker–quantitative 
trait loci (QTL) linkage was true for different 
association mapping models. Results are for different 
sizes of the mapping population (N), a genetic model 
with 30 QTL and a narrow-sense heritability (h2) of 
0.70, 768 markers, and a total of 100 repeats.

N = 384 N = 768 N = 1536

Model† % nonuniform‡
Mean 
K-S§ % non-uniform

Mean 
K-S % nonuniform

Mean 
K-S

Simple 99 0.32 100 0.34 100 0.38

Q 100 0.21 100 0.23 100 0.22

K 100 –0.14 100 –0.18 56 0.17

QK 100 –0.14 100 –0.17 56 0.17

G 18 0.03 18 0.03 29 0.05

QG 16 0.03 14 0.03 28 0.05
†Q, population structure; K, kinship; G, genomewide markers.

‡Percentage of nonuniform distributions of p-values across 100 repeats based 

on a Kolmogorov-Smirnov test (P = 0.01).

§K-S, Kolmogorov-Smirnov test statistic. Large positive values (mean across 

100 repeats) indicate an excess of small p-values whereas large negative 

values indicate an excess of large p-values.
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Table 2. Number of true quantitative trait loci (QTL) detected (NTQ), number of false positives (NFP), and number 
of signifi cant markers for different association mapping models. Mapping population sizes (N) and signifi cance 
levels for declaring QTL (P) varied, and 768 markers were used.

15 QTL, h2† = 0.80 30 QTL, h2 = 0.70
N Model‡ P True QTL False positives Signifi cant markers True QTL False positives Signifi cant markers

384 Simple 0.0001 5.3 77.1 86.4 4.2 23.4 30.1
Simple 0.00001 4.2 48.7 55.8 2.6 11.4 15.4
Simple 0.000001 3.3 31.6 37.3 1.6 5.6 7.9
Q 0.0001 4.9 20.6 28.9 3.9 9.3 15.3
Q 0.00001 3.7 11.4 17.7 2.4 3.9 7.4
Q 0.000001 3.0 6.8 11.7 1.4 1.8 3.8
K 0.0001 3.0 0.8 4.7 1.0 0.2 1.3
K 0.00001 1.9 0.3 2.7 0.4 0.0 0.5
K 0.000001 1.2 0.1 1.6 0.1 0.0 0.1
QK 0.0001 2.9 0.7 4.7 1.0 0.1 1.3
QK 0.00001 1.9 0.3 2.7 0.4 0.0 0.4
QK 0.000001 1.2 0.1 1.5 0.1 0.0 0.1
G 0.0001 8.0 6.9 14.9 7.3 5.4 12.5
G 0.00001 7.5 4.5 11.9 6.3 3.7 9.8
G 0.000001 7.0 3.2 10.1 5.3 2.6 7.8
QG 0.0001 7.8 5.2 13.0 6.9 4.1 10.7
QG 0.00001 7.2 3.0 10.2 5.6 2.6 8.0
QG 0.000001 6.6 2.0 8.6 4.5 1.7 6.1

LSD(0.05) 0.3 0.3 0.3 0.3 0.2 0.3
768 Simple 0.0001 7.7 118.3 132.1 8.3 43.5 57.2

Simple 0.00001 6.7 80.8 92.8 6.4 25.4 35.6
Simple 0.000001 5.9 55.8 66.1 4.7 14.9 22.3
Q 0.0001 7.5 37.5 50.9 8.4 22.2 35.7
Q 0.00001 6.5 24.4 35.9 6.1 12.2 21.8
Q 0.000001 5.7 17.0 27.0 4.5 6.9 13.7
K 0.0001 4.8 0.6 6.9 3.1 0.1 3.6
K 0.00001 3.8 0.3 5.0 1.6 0.0 1.7
K 0.000001 3.0 0.1 3.7 0.7 0.0 0.7
QK 0.0001 4.7 0.7 6.9 3.1 0.1 3.5
QK 0.00001 3.8 0.3 5.0 1.6 0.0 1.7
QK 0.000001 3.0 0.1 3.7 0.7 0.0 0.7
G 0.0001 11.1 6.8 18.0 14.0 5.6 19.2
G 0.00001 10.6 4.0 14.6 12.7 3.6 16.1
G 0.000001 10.3 2.6 13.0 11.8 2.7 14.1
QG 0.0001 10.9 5.2 16.2 13.5 4.3 17.6
QG 0.00001 10.5 2.9 13.4 12.3 2.8 14.8
QG 0.000001 10.1 1.8 11.9 11.2 1.9 12.8

LSD(0.05) 0.3 0.2 0.3 0.4 0.2 0.3
1536 Simple 0.0001 9.5 165.4 183.1 12.6 70.9 93.1

Simple 0.00001 8.9 121.6 137.9 10.7 47.3 66.0
Simple 0.000001 8.2 89.6 104.5 9.0 31.7 47.2
Q 0.0001 9.7 59.9 77.7 13.2 46.2 69.3
Q 0.00001 8.8 44.5 60.5 11.3 30.9 50.5
Q 0.000001 7.9 34.4 48.9 9.5 21.2 37.4
K 0.0001 7.9 19.2 31.4 9.2 14.4 27.6
K 0.00001 6.8 12.3 22.7 7.0 7.8 17.2
K 0.000001 6.1 8.0 16.9 5.1 4.6 11.4
QK 0.0001 7.8 15.7 27.8 9.1 12.4 25.4
QK 0.00001 6.8 9.7 19.9 6.8 6.7 16.0
QK 0.000001 6.1 6.2 14.9 5.1 3.6 10.4
G 0.0001 13.6 4.6 18.6 19.8 4.5 24.1
G 0.00001 13.4 2.2 15.9 18.7 2.8 21.3
G 0.000001 13.2 1.4 14.8 17.8 2.0 19.6
QG 0.0001 13.5 3.4 17.4 19.6 3.7 23.2
QG 0.00001 13.3 1.6 15.2 18.5 2.2 20.5
QG 0.000001 13.1 0.9 14.2 17.4 1.5 18.7

LSD(0.05) 0.3 0.3 0.3 0.4 0.3 0.5
†h2, narrow-sense heritability.

‡Q, population structure; K, kinship; G, genomewide markers.
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With the K and QK models, the results on control 
of the Type I error rate (Table 1) and the low values of 
both N

TQ
 and N

FP
 in some of the simulation experiments 

(Table 2; Fig. 1) suggested that a relaxed signifi cance level 
might be useful for these two models (e.g., P = 0.001, 
which corresponded to a pre-Bonferroni, experiment-
wise error rate of 0.768). Th e use of P = 0.001 in the QK 
model led to N

TQ
 of 2.7 to 4.4 and N

FP
 of 0.8 to 1.8 with N 

= 384 and N
TQ

 of 5.8 to 6.1 and N
FP

 of 0.7 to 1.6 with N = 
768. When the population size was increased to N = 1536, 
the use of P = 0.001 in the QK model led to N

TQ
 of 9.2 to 

12.0 but these higher values of N
TQ

 were accompanied 
by unacceptably high N

FP
 values of 25.0 to 28.2. Similar 

results were observed for the K model (results not shown). 
Such subjectivity regarding the appropriate P for a given N 
is a drawback of the K and QK models.

Implications and Application
Th e results from this study strongly suggest that a 
genomewide selection framework (Meuwissen et al., 
2001) is useful for modeling polygenic background 
eff ects in association mapping. Th e G and QG models, 
which involve adjustment for eff ects of QTL at back-
ground chromosomes, was superior to the K and QK 
models (Yu et al., 2006) that have been routinely used in 
association mapping in plants (Zhu et al., 2008; Beattie et 
al., 2010; Ghavami et al., 2011; Gutiérrez et al., 2011; Li et 
al., 2011; Van Inghelandt et al., 2012).

Th e K and QK models use a global estimate (i.e., 
across all chromosomes) of kinship via the K matrix. 
Because there is no separation in kinship and in polygenic 
eff ects (u) between the chromosome being tested for QTL 
and the chromosomes not being tested for QTL, u could 
absorb some of the eff ects of QTL close to the marker 
being tested for signifi cance. In other words, the K and 
QK models may have diffi  culty in separating the eff ects 
of QTL linked to the marker being tested from the joint 
eff ects of QTL found elsewhere in the genome. Suppose 
a species has only two chromosomes, and the map order 
of linked markers (M

i
) and QTL (Q

j
) is M

1
 Q

1
 M

2
 M

3
 Q

2
 

M
4
 M

5
 on chromosome 1 and M

6
 Q

3
 M

7
 Q

4
 M

8
 Q

5
 M

9
 

Q
6
 M

10
 on chromosome 2. Further suppose that M

2
 is 

the marker being tested for its signifi cance. In the K and 
QK models, an eff ect for M

2
 is fi tted while attempting to 

simultaneously fi t the joint eff ects of Q
2
, Q

3
, Q

4
, Q

5
, and Q

6
 

not via individual markers but via the fi tted means of the 
individuals that carry diff erent combinations of alleles at 
these QTL. Kinship information based on all 10 markers 
is used to capture information from relatives. Because 
markers are not used to track the eff ects at individual 
background QTL, the resolution in this example may be 
insuffi  cient between eff ects associated with marker M

2
 

(mainly due to Q
1
) versus the joint eff ects of the other 

QTL, especially those on the same chromosome (Q
2
).

In contrast to the K and QK models, the G and 
QG models would attempt, in the above example, 
to account for the joint eff ects associated with all 10 
markers. Adjustment for the eff ects of the four QTL 

on chromosome 2 is fi rst made through genomewide 
prediction with markers M

6
 to M

10
. Th e eff ects associated 

with markers M
1
 to M

5
 on chromosome 1 are then 

tested by multiple regression. Th e results from this 
study suggest that fi nding QTL through the modeling of 
marker eff ects only (G and QG models) is superior to the 
modeling of the mean eff ect of a marker allele across all 
individuals (i.e., α in the K and QK linear models) along 
with the fi tted eff ects of the individuals themselves (i.e., u 
in the K and QK linear models).

Th e foregoing illustration suggests an alternative 
approach for the K and QK models: instead of having a 
global K matrix, K matrices specifi c to each chromosome 
may be used. With 10 maize chromosomes, for example, the 
K matrix used in testing for QTL on chromosome 1 would 
be calculated only from the markers on chromosomes 2 to 
10. Th is alternative approach needs to be investigated.

Strictly speaking, best linear unbiased prediction 
(BLUP) assumes that the genetic (V

G
) and nongenetic 

variances (V
E
) are known without error and all 

implementations of BLUP (including RR-BLUP with 
genomewide markers) are therefore approximations. 
Th e variance of marker eff ects in RR-BLUP is V

M
 = V

G
/

N
M

 (Meuwissen et al., 2001) and the true values of V
G
 

and V
E
 were used in the simulations in this study. In 

practice, both V
G
 and V

E
 would need to be estimated 

from the phenotypic data through an approach such as an 
expectation-maximization-type algorithm (Dempster et 
al., 1977). On the other hand, the term V

E
/V

M
 = V

E
N

M
/V

G
 

in the mixed-model equations for RR-BLUP (Bernardo, 
2010, p. 294) can also be expressed as N

M
(1 – h2)/h2. Th is 

means that RR-BLUP actually requires information on 
h2 instead of on V

G
 and V

E
 individually. Given that h2 

ranges from 0 to 1, the value of h2 can be estimated by (i) 
repeatedly splitting the data set into a training set and 

Figure 1. Number of true quantitative trait loci (QTL) detected (NTQ) 
and number of false positives (NFP) with association mapping 
models that use population structure and genomewide markers 
(QG model, solid squares), genomewide markers (G model, +), 
and population structure and kinship (QK model, open triangles). 
Results are for three signifi cance levels (P = 0.0001, 0.00001, 
and 0.000001), two genetic models [15 QTL with narrow-sense 
heritability (h2) = 0.80 and 30 QTL with h2 = 0.70], and three 
mapping population sizes (N = 384, 768, and 1536).
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validation set, (ii) assuming diff erent values of h2 (e.g., 
0.05, 0.10, 0.15,…, 0.95) in RR-BLUP, and (iii) determining 
which value of h2 leads to the most accurate cross-
validation predictions. Th is approach will circumvent the 
need to account for relatedness and population structure 
in attempting to estimate V

G
 and V

E
 by traditional 

approaches in an association mapping panel.
Variations of the G and QG models are possible. 

Multiple regression by backward elimination was conducted 
in this study and this approach will fail if, with large-scale 
genotying (Close et al., 2009; Ganal et al., 2011; Poland et 
al., 2012), the number of markers on a given chromosome 
exceeds the size of the association mapping panel. In this 
situation, multiple regression by forward selection may 
be used to prevent overparameterization. Furthermore, 
genomewide predictions were obtained by RR-BLUP 
(Meuwissen et al., 2001). Empirical results in plants have 
shown that genomewide predictions with RR-BLUP were 
as good as if not better than predictions with more complex 
Bayesian methods (Lorenzana and Bernardo, 2009; Heff ner 
et al., 2009; Asoro et al., 2011; Lorenz et al., 2011; Guo et 
al., 2012; Schulz-Streeck et al., 2012). However, if the trait 
is controlled by relatively few QTL or is expressed in a 
binary manner, Bayesian or machine-learning approaches 
that constrain many markers to having null eff ects might 
be useful (Long et al., 2007; Resende et al., 2012). Soft ware 
is needed for association mapping with the G and QG 
models as implemented in this study along with options 
for alternative methods for multiple regression and 
genomewide prediction.
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